TY - JOUR
T1 - YOLOv5 based object detection in reel package X-ray images of semiconductor component
AU - Park, Jinwoo
AU - Lee, Jaehyeong
AU - Jeong, Jongpil
N1 - Publisher Copyright:
© 2024 The Author(s)
PY - 2024/3/15
Y1 - 2024/3/15
N2 - The industrial manufacturing landscape is currently shifting toward the incorporation of technologies based on artificial intelligence (AI). This transition includes an evolution toward smart factory infrastructure, with a specific focus on AI-driven strategies in production and quality control. Specifically, AI-empowered computer vision has emerged as a potent tool that offers a departure from extant rule-based systems and provides enhanced operational efficiency at manufacturing sites. As the manufacturing sector embraces this new paradigm, the impetus to integrate AI-integrated manufacturing is evident. Within this framework, one salient application is AI deep learning–facilitated small-object detection, which is poised to have extensive implications for diverse industrial applications. This study describes an optimized iteration of the YOLOv5 model, which is known for its efficacious single-stage object-detection abilities underpinned by PyTorch. Our proposed “improved model” incorporates an additional layer to the model's canonical three-layer architecture, augmenting accuracy and computational expediency. Empirical evaluations using semiconductor X-ray imagery reveal the model's superior performance metrics. Given the intricate specifications of surface-mount technologies, which are characterized by a plethora of micro-scale components, our model makes a seminal contribution to real-time, in-line production assessments. Quantitative analyses show that our improved model attained a mean average precision of 0.622, surpassing YOLOv5's 0.349, and a marked accuracy enhancement of 0.865, which is a significant improvement on YOLOv5's 0.552. These findings bolster the model's robustness and potential applicability, particularly in discerning objects at reel granularities during real-time inferencing.
AB - The industrial manufacturing landscape is currently shifting toward the incorporation of technologies based on artificial intelligence (AI). This transition includes an evolution toward smart factory infrastructure, with a specific focus on AI-driven strategies in production and quality control. Specifically, AI-empowered computer vision has emerged as a potent tool that offers a departure from extant rule-based systems and provides enhanced operational efficiency at manufacturing sites. As the manufacturing sector embraces this new paradigm, the impetus to integrate AI-integrated manufacturing is evident. Within this framework, one salient application is AI deep learning–facilitated small-object detection, which is poised to have extensive implications for diverse industrial applications. This study describes an optimized iteration of the YOLOv5 model, which is known for its efficacious single-stage object-detection abilities underpinned by PyTorch. Our proposed “improved model” incorporates an additional layer to the model's canonical three-layer architecture, augmenting accuracy and computational expediency. Empirical evaluations using semiconductor X-ray imagery reveal the model's superior performance metrics. Given the intricate specifications of surface-mount technologies, which are characterized by a plethora of micro-scale components, our model makes a seminal contribution to real-time, in-line production assessments. Quantitative analyses show that our improved model attained a mean average precision of 0.622, surpassing YOLOv5's 0.349, and a marked accuracy enhancement of 0.865, which is a significant improvement on YOLOv5's 0.552. These findings bolster the model's robustness and potential applicability, particularly in discerning objects at reel granularities during real-time inferencing.
KW - Artificial intelligence
KW - Semiconductor
KW - Small object detection
KW - X-ray
KW - YOLOv5
UR - https://www.scopus.com/pages/publications/85186457819
U2 - 10.1016/j.heliyon.2024.e26532
DO - 10.1016/j.heliyon.2024.e26532
M3 - Article
AN - SCOPUS:85186457819
SN - 2405-8440
VL - 10
JO - Heliyon
JF - Heliyon
IS - 5
M1 - e26532
ER -