TY - JOUR
T1 - Wave-Mode Configurable Ultrasonic Non-Destructive Evaluation System Using Optoacoustic Prism
AU - Abbasi, Muhammad Awais
AU - Baac, Hyoung Won
N1 - Publisher Copyright:
© 2013 IEEE.
PY - 2022
Y1 - 2022
N2 - We demonstrate a multi-mode ultrasonic non-destructive evaluation (NDE) system based on a hybrid transducer including an optoacoustic (OA) prism. In this system, the OA prism with a flexible curved transmitter is capable of not only generating acoustic signals with high OA conversion efficiency but also covering a wide angular range to initiate various acoustic wave modes into a specimen whose interface is in contact with the OA prism. The latter angular manipulation provides great flexibility for NDE, which is uniquely enabled by developing and employing the curved OA transmitter coated on the prism. Using finite-element-based simulation, we validate acoustic signal generation and propagation inside an aluminum specimen. Then, excitation, propagation, and acquisition of shear and Rayleigh wave modes are confirmed experimentally. As feasibility demonstration, our hybrid transducer system, consisting of the OA prism and a piezoelectric receiver, is utilized for NDE of an aluminum specimen which includes air void discontinuity of 5-mm diameter. This is realized by multi-mode acoustic excitation from the OA prism with incident angles of 33°, 42°, 47°, and 60°. This exhibits detection accuracy error less than 2% as confirmed by comparing calculated and measured time-of-flight values. Such OA prism-based realization of all range of angular wave modes allows our system to be potentially useful for NDE over broad metallic materials as long as their sound speed is faster than that of the OA prism, without causing additional reverberation noise commonly observed in conventional piezoelectric counterparts.
AB - We demonstrate a multi-mode ultrasonic non-destructive evaluation (NDE) system based on a hybrid transducer including an optoacoustic (OA) prism. In this system, the OA prism with a flexible curved transmitter is capable of not only generating acoustic signals with high OA conversion efficiency but also covering a wide angular range to initiate various acoustic wave modes into a specimen whose interface is in contact with the OA prism. The latter angular manipulation provides great flexibility for NDE, which is uniquely enabled by developing and employing the curved OA transmitter coated on the prism. Using finite-element-based simulation, we validate acoustic signal generation and propagation inside an aluminum specimen. Then, excitation, propagation, and acquisition of shear and Rayleigh wave modes are confirmed experimentally. As feasibility demonstration, our hybrid transducer system, consisting of the OA prism and a piezoelectric receiver, is utilized for NDE of an aluminum specimen which includes air void discontinuity of 5-mm diameter. This is realized by multi-mode acoustic excitation from the OA prism with incident angles of 33°, 42°, 47°, and 60°. This exhibits detection accuracy error less than 2% as confirmed by comparing calculated and measured time-of-flight values. Such OA prism-based realization of all range of angular wave modes allows our system to be potentially useful for NDE over broad metallic materials as long as their sound speed is faster than that of the OA prism, without causing additional reverberation noise commonly observed in conventional piezoelectric counterparts.
KW - acoustic signal analysis
KW - flexible optoacoustic transmitter
KW - non-destructive evaluation
KW - Optoacoustic prism
KW - Rayleigh wave
KW - shear wave
KW - ultrasound transducer
UR - https://www.scopus.com/pages/publications/85130444077
U2 - 10.1109/ACCESS.2022.3176450
DO - 10.1109/ACCESS.2022.3176450
M3 - Article
AN - SCOPUS:85130444077
SN - 2169-3536
VL - 10
SP - 54720
EP - 54729
JO - IEEE Access
JF - IEEE Access
ER -