TY - JOUR
T1 - Understanding lithium, sodium, and potassium storage mechanisms in silicon oxycarbide
AU - Chandra, Christian
AU - Devina, Winda
AU - Cahyadi, Handi Setiadi
AU - Kwak, Sang Kyu
AU - Kim, Jaehoon
N1 - Publisher Copyright:
© 2021 Elsevier B.V.
PY - 2022/1/15
Y1 - 2022/1/15
N2 - The use of silicon oxycarbides (SiOCs) as anode materials in lithium-ion batteries and sodium-ion batteries has risen considerably in recent years. However, the amorphous and complex structures of SiOCs that contains C-rich and O-rich SiOC phases make it difficult to clarify Li+- and Na+-ion storage mechanisms experimentally. This study uncovers the Li+-, Na+-, and K+-ion storage mechanisms in both the O-rich SiO1.5C0.5 and C-rich SiO0.5C1.5 structures using the density functional theory. The ions inserted at the initial discharge process fill the microvoids in the SiOCs. A further ion insertion causes Si–O and Si–C bond cleavage, and thus results in the formation of a large-size free volume, which is favorable for subsequent ion insertion. The reasons for the high Li+-ion storage capacity as compared to Na+-ion are less severe volume expansion, more favorable formation of Li-rich Si compounds and Li–Si alloys. The theoretical K+-ion storage capacities in the O-rich SiO1.5C0.5 and C-rich SiO0.5C1.5 phases are much lower (335 and 186 mAh g−1, respectively) than those of Li+-ion (519 and 681 mAh g−1, respectively) and Na+-ion storages (335 and 681 mAh g−1, respectively). The huge structural instability caused by the repulsive interaction between the K+ ions results in the low storage capacity.
AB - The use of silicon oxycarbides (SiOCs) as anode materials in lithium-ion batteries and sodium-ion batteries has risen considerably in recent years. However, the amorphous and complex structures of SiOCs that contains C-rich and O-rich SiOC phases make it difficult to clarify Li+- and Na+-ion storage mechanisms experimentally. This study uncovers the Li+-, Na+-, and K+-ion storage mechanisms in both the O-rich SiO1.5C0.5 and C-rich SiO0.5C1.5 structures using the density functional theory. The ions inserted at the initial discharge process fill the microvoids in the SiOCs. A further ion insertion causes Si–O and Si–C bond cleavage, and thus results in the formation of a large-size free volume, which is favorable for subsequent ion insertion. The reasons for the high Li+-ion storage capacity as compared to Na+-ion are less severe volume expansion, more favorable formation of Li-rich Si compounds and Li–Si alloys. The theoretical K+-ion storage capacities in the O-rich SiO1.5C0.5 and C-rich SiO0.5C1.5 phases are much lower (335 and 186 mAh g−1, respectively) than those of Li+-ion (519 and 681 mAh g−1, respectively) and Na+-ion storages (335 and 681 mAh g−1, respectively). The huge structural instability caused by the repulsive interaction between the K+ ions results in the low storage capacity.
KW - Batteries
KW - Density functional theory
KW - Ion storage mechanism
KW - Silicon oxycarbide
KW - Volume expansion
UR - https://www.scopus.com/pages/publications/85111341141
U2 - 10.1016/j.cej.2021.131072
DO - 10.1016/j.cej.2021.131072
M3 - Article
AN - SCOPUS:85111341141
SN - 1385-8947
VL - 428
JO - Chemical Engineering Journal
JF - Chemical Engineering Journal
M1 - 131072
ER -