Abstract
Porous palladium (Pd) nanoparticles have garnered great research attention due to their potential anticancer activity and photothermal effect. In this study, a transferrin-conjugated pH-sensitive platform (Tf-PPP), comprising porous Pd nanoparticles (PdNPs) and paclitaxel (PTX), was successfully developed for combined chemo-phototherapy. Tf-PPPs have a small size of 164.6 ± 8.7 nm, PDI of 0.278 ± 0.029, and negative charge (-13.2 ± 1.8 mV). Poly(acrylic acid)-poly(ethylene oxide) (PAA-PEO), a pH sensitive polymer, was used to achieve pH-dependent drug release from nanoparticles. Transferrin (Tf) conjugated on the surface of nanoplatforms could enhance the cellular uptake and prolong nanoparticle accumulation in the tumor site. The combination of phototherapy induced by PdNPs and chemotherapeutic agent (PTX) could exhibit synergistic anticancer activities. Consistent findings were observed in both in vitro experiments including cytotoxicity, live/dead assay, and assessment of apoptotic protein levels, and in vivo antitumor study in MCF-7 tumor-bearing mice, with results decreasing in the following order: Tf-PPPs + NIR > Tf-PPPs > PPPs + NIR > PPPs > PTX > PdNPs. These findings suggest that the administration of Tf-PPPs, followed by NIR irradiation could be a promising strategy in the treatment of cancer.
| Original language | English |
|---|---|
| Pages (from-to) | 265-275 |
| Number of pages | 11 |
| Journal | Colloids and Surfaces B: Biointerfaces |
| Volume | 176 |
| DOIs | |
| State | Published - 1 Apr 2019 |
| Externally published | Yes |
Keywords
- Paclitaxel
- Palladium nanoparticles
- pH sensitive
- Phototherapy
- Transferrin