TY - JOUR
T1 - Torsionally Responsive Tropone-Fused Conjugated Polymers
AU - Kim, Kyung Su
AU - Cha, Inhwan
AU - Cho, Daeheum
AU - Ahn, Jongho
AU - Satheeshkumar, Chinnadurai
AU - Yang, Ki Seok
AU - Lee, Jin Yong
AU - Lee, Yunmi
AU - Song, Changsik
N1 - Publisher Copyright:
© 2015 American Chemical Society.
PY - 2015/9/30
Y1 - 2015/9/30
N2 - Torsionally responsive molecular systems can change their electronic properties according to the dihedral angles and can be utilized as sensory materials. We have designed and synthesized novel tropone-fused conjugated polymers PBTr, PBTr-T, and PBTr-Tz that showed interesting dihedral-angle-dependent variations in UV-vis absorptions. Tropone-fused thiophene derivatives were prepared from one-step condensation of thiophene-3,4-dialdehyde and aliphatic ketones via a modular, facile, and high-yielding method. Subsequent halogenation and Stille cross-coupling polymerization with a bis(stannyl)benzodithiophene resulted in a tropone-fused conjugated polymer PBTr. We were also able to prepare thiophene- and thiazole-bridged polymers, PBTr-T and PBTr-Tz, respectively, using similar synthetic methods. Electronic absorptions of the newly synthesized PBTrs were measured in solutions and in films states. Substantial red-shifts occurred in the case of thiophene-bridged PBTr-T, whereas almost no shift was observed for thiazole-bridged PBTr-Tz. We attributed this to the substantial change in the torsional angle between the tropone-fused thiophene moiety and thiophene, which was further supported by density functional theory (DFT) calculations. Similar spectral changes of UV-vis absorptions were observed when a poor solvent (methanol) was introduced to a chloroform solution of PBTr-T. Reverse torsional angle variations were realized with initially planar PBTr-Tz by introducing steric hindrance through protonation on the thiazole rings. We believe that torsionally responsive tropone-fused conjugated polymers are promising as novel platforms for sensory applications.
AB - Torsionally responsive molecular systems can change their electronic properties according to the dihedral angles and can be utilized as sensory materials. We have designed and synthesized novel tropone-fused conjugated polymers PBTr, PBTr-T, and PBTr-Tz that showed interesting dihedral-angle-dependent variations in UV-vis absorptions. Tropone-fused thiophene derivatives were prepared from one-step condensation of thiophene-3,4-dialdehyde and aliphatic ketones via a modular, facile, and high-yielding method. Subsequent halogenation and Stille cross-coupling polymerization with a bis(stannyl)benzodithiophene resulted in a tropone-fused conjugated polymer PBTr. We were also able to prepare thiophene- and thiazole-bridged polymers, PBTr-T and PBTr-Tz, respectively, using similar synthetic methods. Electronic absorptions of the newly synthesized PBTrs were measured in solutions and in films states. Substantial red-shifts occurred in the case of thiophene-bridged PBTr-T, whereas almost no shift was observed for thiazole-bridged PBTr-Tz. We attributed this to the substantial change in the torsional angle between the tropone-fused thiophene moiety and thiophene, which was further supported by density functional theory (DFT) calculations. Similar spectral changes of UV-vis absorptions were observed when a poor solvent (methanol) was introduced to a chloroform solution of PBTr-T. Reverse torsional angle variations were realized with initially planar PBTr-Tz by introducing steric hindrance through protonation on the thiazole rings. We believe that torsionally responsive tropone-fused conjugated polymers are promising as novel platforms for sensory applications.
UR - https://www.scopus.com/pages/publications/84944111944
U2 - 10.1021/acs.macromol.5b01421
DO - 10.1021/acs.macromol.5b01421
M3 - Article
AN - SCOPUS:84944111944
SN - 0024-9297
VL - 48
SP - 7015
EP - 7023
JO - Macromolecules
JF - Macromolecules
IS - 19
ER -