TY - GEN
T1 - Slippage and wetting transition of water flow in superhydrophobic micro-channel
AU - Byun, Doyoung
AU - Kim, Jihoon
AU - Hong, Jongin
PY - 2008
Y1 - 2008
N2 - We investigate the slippage effect in a super-hydrophobic micro-channel. The micro-scale grooves are fabricated on the vertical wall to make the super-hydrophobic surfaces, which enable us visualize the flow fields near walls and directly measure the slip length. Velocity profiles are measured using micro-particle image velocimetry (PIV). The velocity profile near the wall shows larger slip length and, if the groove structure is high and wide, the liquid meniscus forms curves into the valley so that the wavy flow is created after the grooves. Also depending on the ratio of pitch to width of the groove structure, the water meniscus status can be either sustained between the valleys or collapsed to be wet. This Cassie to Wenzel transition is observed in the micro-channel. And we investigate the effects of grooves shape and the flow rate on the wetting transition.
AB - We investigate the slippage effect in a super-hydrophobic micro-channel. The micro-scale grooves are fabricated on the vertical wall to make the super-hydrophobic surfaces, which enable us visualize the flow fields near walls and directly measure the slip length. Velocity profiles are measured using micro-particle image velocimetry (PIV). The velocity profile near the wall shows larger slip length and, if the groove structure is high and wide, the liquid meniscus forms curves into the valley so that the wavy flow is created after the grooves. Also depending on the ratio of pitch to width of the groove structure, the water meniscus status can be either sustained between the valleys or collapsed to be wet. This Cassie to Wenzel transition is observed in the micro-channel. And we investigate the effects of grooves shape and the flow rate on the wetting transition.
UR - https://www.scopus.com/pages/publications/77952603033
U2 - 10.1115/ICNMM2008-62341
DO - 10.1115/ICNMM2008-62341
M3 - Conference contribution
AN - SCOPUS:77952603033
SN - 0791848345
SN - 9780791848340
T3 - Proceedings of the 6th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM2008
SP - 1229
EP - 1235
BT - Proceedings of the 6th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM2008
T2 - 6th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM2008
Y2 - 23 June 2008 through 25 June 2008
ER -