Simple and Effective Out-of-Distribution Detection via Cosine-based Softmax Loss

Soon Cheol Noh, Dong Eon Jeong, Jee Hyong Lee

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

Deep learning models need to detect out-of-distribution (OOD) data in the inference stage because they are trained to estimate the train distribution and infer the data sampled from the distribution. Many methods have been proposed, but they have some limitations, such as requiring additional data, input processing, or high computational cost. Moreover, most methods have hyperparameters to be set by users, which have a significant impact on the detection rate. We propose a simple and effective OOD detection method by combining the feature norm and the Mahalanobis distance obtained from classification models trained with the cosine-based softmax loss. Our method is practical because it does not use additional data for training, is about three times faster when inferencing than the methods using the input processing, and is easy to apply because it does not have any hyperparameters for OOD detection. We confirm that our method is superior to or at least comparable to state-of-the-art OOD detection methods through the experiments.

Original languageEnglish
Title of host publicationProceedings - 2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages16514-16523
Number of pages10
ISBN (Electronic)9798350307184
DOIs
StatePublished - 2023
Event2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023 - Paris, France
Duration: 2 Oct 20236 Oct 2023

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
ISSN (Print)1550-5499

Conference

Conference2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023
Country/TerritoryFrance
CityParis
Period2/10/236/10/23

Fingerprint

Dive into the research topics of 'Simple and Effective Out-of-Distribution Detection via Cosine-based Softmax Loss'. Together they form a unique fingerprint.

Cite this