Role of the myristoylation site in expressing exogenous functional proteins in coxsackieviral vector

Byung Kwan Lim, Soo Hyeon Yun, Eun Seon Ju, Chae Ok Gil, Duk Kyung Kim, Eun Seok Jeon

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

We generated a cardiotropic replication-competent chimeric coxsackievirus B3 (CVB3) to express alcohol dehydrogenase (ADH). Although exogenously expressed ADH was found by Western blot analysis, its enzyme function was repressed. To define the factor that inhibits the enzymatic function of ADH, we introduced a sitedirected mutation at the second amino acid (MGAQEF...) of the CVB3 VP0 capsid protein, effectively changing glycine to alanine. This glycine is known to be a myristoylation site during viral capsid protein maturation in infected cells. In contrast to the unmodified virus, ADH expression and enzymatic function were readily detectable in the mutated rCVB3-ADH (G2A) virus. While expression of ADH required mutation of the CVB3 VP0 myristoylation site for proper function, another chimeric virus that expresses green fluorescent protein (rCVB3-GFP (G or A)) worked independently of the myristoylation site. Indeed, infected HeLa cells displayed GFP under a fluorescent microscope. These results indicate that the myristoylation site in the VP0 capsid protein inhibited the expression of enzymatically active ADH but not GFP. VP0 myristoylation is dispensable for chimeric CVB3 virus replication.

Original languageEnglish
Pages (from-to)1173-1176
Number of pages4
JournalBioscience, Biotechnology and Biochemistry
Volume76
Issue number6
DOIs
StatePublished - 2012

Keywords

  • Alcohol dehydrogenase
  • Coxsackievirus B3
  • Myristoylation site
  • Viral vector

Fingerprint

Dive into the research topics of 'Role of the myristoylation site in expressing exogenous functional proteins in coxsackieviral vector'. Together they form a unique fingerprint.

Cite this