TY - JOUR
T1 - Quasi-freestanding graphene-on-single walled carbon nanotube electrode for applications in organic light-emitting diode
AU - Liu, Yanpeng
AU - Jung, Eun
AU - Wang, Yu
AU - Zheng, Yi
AU - Park, Eun Ji
AU - Cho, Sung Min
AU - Loh, Kian Ping
PY - 2014/3/12
Y1 - 2014/3/12
N2 - An air-stable transparent conductive film with "quasi- freestanding" graphene supported on horizontal single walled carbon nanotubes (SWCNTs) arrays is fabricated. The sheet resistance of graphene films stacked via layer-by-layer transfer (LBL) on quartz, and modified by 1-Pyrenebutyric acid N-hydroxysuccinimide ester (PBASE), is reduced from 273 Ω/sq to about 76 Ω/sq. The electrical properties are stable to heat treatment (up to 200 °C) and ambient exposure. Organic light-emitting diodes (OLEDs) constructed of this carbon anode (T ≈ 89.13% at 550 nm) exhibit ≈88% power efficiency of OLEDs fabricated on an ITO anode (low turn on voltage ≈3.1 eV, high luminance up to ≈29 490 cd/m2, current efficiency ≈14.7 cd/A). Most importantly, the entire graphene-on-SWCNT hybrid electrodes can be transferred onto plastic (PET) forming a highly-flexible OLED device, which continues to function without degradation in performance at bending angles >60°. A high efficiency organic light emitting diode (OLED) is fabricated on a flexible and transparent electrode made from "quasi-freestanding" graphene supported on laterally aligned single walled carbon nanotubes, and doped with 1-pyrenebutyric acid N-hydroxysuccinimide ester. The all-carbon electrode exhibits highly stable sheet resistance of 76 Ω/square.
AB - An air-stable transparent conductive film with "quasi- freestanding" graphene supported on horizontal single walled carbon nanotubes (SWCNTs) arrays is fabricated. The sheet resistance of graphene films stacked via layer-by-layer transfer (LBL) on quartz, and modified by 1-Pyrenebutyric acid N-hydroxysuccinimide ester (PBASE), is reduced from 273 Ω/sq to about 76 Ω/sq. The electrical properties are stable to heat treatment (up to 200 °C) and ambient exposure. Organic light-emitting diodes (OLEDs) constructed of this carbon anode (T ≈ 89.13% at 550 nm) exhibit ≈88% power efficiency of OLEDs fabricated on an ITO anode (low turn on voltage ≈3.1 eV, high luminance up to ≈29 490 cd/m2, current efficiency ≈14.7 cd/A). Most importantly, the entire graphene-on-SWCNT hybrid electrodes can be transferred onto plastic (PET) forming a highly-flexible OLED device, which continues to function without degradation in performance at bending angles >60°. A high efficiency organic light emitting diode (OLED) is fabricated on a flexible and transparent electrode made from "quasi-freestanding" graphene supported on laterally aligned single walled carbon nanotubes, and doped with 1-pyrenebutyric acid N-hydroxysuccinimide ester. The all-carbon electrode exhibits highly stable sheet resistance of 76 Ω/square.
KW - "quasi-freestanding"
KW - few-layer graphene
KW - organic light-emitting diodes
KW - single walled carbon nanotubes arrays
KW - transparent conductive films
UR - https://www.scopus.com/pages/publications/84897743294
U2 - 10.1002/smll.201301829
DO - 10.1002/smll.201301829
M3 - Article
AN - SCOPUS:84897743294
SN - 1613-6810
VL - 10
SP - 944
EP - 949
JO - Small
JF - Small
IS - 5
ER -