QSG Transformer: Transformer with Query-Attentive Semantic Graph for Query-Focused Summarization

Choongwon Park, Youngjoong Ko

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

10 Scopus citations

Abstract

Query-Focused Summarization (QFS) is a task that aims to extract essential information from a long document and organize it into a summary that can answer a query. Recently, Transformer-based summarization models have been widely used in QFS. However, the simple Transformer architecture cannot utilize the relationships between distant words and information from a query directly. In this study, we propose the QSG Transformer, a novel QFS model that leverages structure information on Query-attentive Semantic Graph (QSG) to address these issues. Specifically, in the QSG Transformer, QSG node representation is improved by a proposed query-attentive graph attention network, which spreads the information of the query node into QSG using Personalized PageRank, and it is used to generate a summary that better reflects the information from the relationships of a query and document. The proposed method is evaluated on two QFS datasets, and it achieves superior performances over the state-of-the-art models.

Original languageEnglish
Title of host publicationSIGIR 2022 - Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval
PublisherAssociation for Computing Machinery, Inc
Pages2589-2594
Number of pages6
ISBN (Electronic)9781450387323
DOIs
StatePublished - 7 Jul 2022
Event45th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2022 - Madrid, Spain
Duration: 11 Jul 202215 Jul 2022

Publication series

NameSIGIR 2022 - Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval

Conference

Conference45th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2022
Country/TerritorySpain
CityMadrid
Period11/07/2215/07/22

Keywords

  • graph neural networks
  • graph-based method
  • query-focused summarization

Fingerprint

Dive into the research topics of 'QSG Transformer: Transformer with Query-Attentive Semantic Graph for Query-Focused Summarization'. Together they form a unique fingerprint.

Cite this