Abstract
Acquisition of metastatic potential by cancer cells is related to cancer stemness and anchorage-independent growth. The onset and progression of cancer are known to involve Hedgehog (HH) signaling that is activated by the binding of HH to the Patched 1 (PTCH1) receptor. However, the functions and mechanisms of action of PTCH1 in the context of bone metastasis remain to be elucidated. In this study, lentivirally-delivered shRNA was used to deplete PTCH1 levels, which resulted in the inhibition of spherical colony formation by the human non-small cell lung cancer (NSCLC) cell line; this suggested that PTCH1 promotes anchorage-independent growth. Concordantly, knockdown of PTCH1 resulted in significantly reduced migration and invasion of NSCLC cells; this was accompanied by the downregulation of MMP7 and SOX2. PTCH1 knockdown resulted in decreased bone destruction and osteoclastogenesis in a mouse bone metastasis model. These results indicate that PTCH1 may be an important regulator of bone invasion, and strongly suggest that knockdown of PTCH1 may decrease the anchorage-independent growth and metastatic potential of NSCLC.
| Original language | English |
|---|---|
| Article number | 115829 |
| Journal | Bone |
| Volume | 144 |
| DOIs | |
| State | Published - Mar 2021 |
Keywords
- Anchorage-independent growth
- Bone metastasis
- Invasion
- Lung cancer
- PTCH1