TY - JOUR
T1 - Production of human hyaluronidase in a plant-derived protein expression system
T2 - Plant-based transient production of active human hyaluronidase
AU - Jung, Yuchul
AU - Jung, Man Yong
AU - Park, Jin Hee
AU - Jung, Gyou Chul
AU - Hong, Young Seon
AU - Yeom, Chang Hwan
AU - Lee, Sukchan
PY - 2010/12
Y1 - 2010/12
N2 - Four types of human hyaluronidases (rHuHyal-1, -2, -3 and -4) were transiently expressed and purified from Nicotiana benthamiana, and their biochemical characteristics were analyzed. The recombinant HuHyals were expressed via agrobacteria-mediated infiltration and generated and expressed in terms of micrograms per 5 leaves of N. benthamiana. Expressed recombinant HuHyals were purified using a His(6) tagging system and Ni column chromatography, respectively, at pH 8.0, after which the purified rHuHyals were concentrated for additional biochemical analyses. The four types of rHuHyals were allowed to react with hyaluronic acids and chondroitin sulfates. The biochemical properties of rHuHyal-1 fit those of the commercially available Hyal, PH-20, which was extracted from animal testes under acidic conditions (pH 3.5). However, rHuHyal-1 evidenced activity levels 2 to 6-fold greater than the three other rHuHyals (rHuHyal-2, -3 and -4) at pH 3.5. However, only rHuHyal-4 exhibited chondroitinase activity with both 6-S-chondroitin sulfate (chondroitin sulfate C) and 4-S-chondroitin sulfate (chondroitin sulfate A) as standard substrates. The results of zymography demonstrated that recombinant HuHyal 1 was modified by glycosylation, but Escherichia coli Hyal was not. This result demonstrated that plant-based rHuHyal was functionally active and evidenced biochemical characteristics and post-translational protein modifications similar to those of animal testis-derived Hyal.
AB - Four types of human hyaluronidases (rHuHyal-1, -2, -3 and -4) were transiently expressed and purified from Nicotiana benthamiana, and their biochemical characteristics were analyzed. The recombinant HuHyals were expressed via agrobacteria-mediated infiltration and generated and expressed in terms of micrograms per 5 leaves of N. benthamiana. Expressed recombinant HuHyals were purified using a His(6) tagging system and Ni column chromatography, respectively, at pH 8.0, after which the purified rHuHyals were concentrated for additional biochemical analyses. The four types of rHuHyals were allowed to react with hyaluronic acids and chondroitin sulfates. The biochemical properties of rHuHyal-1 fit those of the commercially available Hyal, PH-20, which was extracted from animal testes under acidic conditions (pH 3.5). However, rHuHyal-1 evidenced activity levels 2 to 6-fold greater than the three other rHuHyals (rHuHyal-2, -3 and -4) at pH 3.5. However, only rHuHyal-4 exhibited chondroitinase activity with both 6-S-chondroitin sulfate (chondroitin sulfate C) and 4-S-chondroitin sulfate (chondroitin sulfate A) as standard substrates. The results of zymography demonstrated that recombinant HuHyal 1 was modified by glycosylation, but Escherichia coli Hyal was not. This result demonstrated that plant-based rHuHyal was functionally active and evidenced biochemical characteristics and post-translational protein modifications similar to those of animal testis-derived Hyal.
KW - Chondroitinase
KW - Glycosylation
KW - Hyaluronan
KW - Hyaluronidase
KW - Nicotiana benthamiana
UR - https://www.scopus.com/pages/publications/77957755053
U2 - 10.1016/j.pep.2010.06.003
DO - 10.1016/j.pep.2010.06.003
M3 - Article
C2 - 20558297
AN - SCOPUS:77957755053
SN - 1046-5928
VL - 74
SP - 181
EP - 188
JO - Protein Expression and Purification
JF - Protein Expression and Purification
IS - 2
ER -