Abstract
Drug-based chemotherapy is associated with serious side effects. We developed a chemotherapeutic system comprising a chitosan hydrogel (CH-HG) containing gold cluster-labeled liposomal doxorubicin (DOX) (CH-HG-GLDOX) as an injectable drug depot system. CH-HG-GLDOX can be directly injected into tumor tissue without a surgical procedure, allowing this system to act as a reservoir for liposomal DOX. CH-HG-GLDOX enhanced the retention time of DOX in tumor tissue and controlled its release in response to near-infrared (NIR) irradiation, resulting in significant inhibition of tumor growth and reduced DOX-related toxicity. The combined effect of CH-HG-GLDOX and poly (D,L-lactide-co-glycolic acid) nanoparticle-based vaccines increased cytotoxic CD8+ T cell immunity, leading to enhanced synergistic therapeutic efficacy. CH-HG-GLDOX provides an advanced therapeutic approach for local drug delivery and controlled release of DOX, resulting in reduced toxicity. Here, we suggest a combination strategy for chemo- and immunotherapies, as well as in nanomedicine applications. Statement of significance: We developed an injectable hydrogel containing gold cluster-labeled liposomes for sustained drug release at the tumor site. Moreover, we demonstrated the combined therapeutic efficacy of a hydrogel system and a nanoparticle-based immunotherapeutic vaccine for melanoma cancer. Thus, we show a potential combination approach for chemo- and immunotherapies for cancer treatment.
| Original language | English |
|---|---|
| Pages (from-to) | 508-518 |
| Number of pages | 11 |
| Journal | Acta Biomaterialia |
| Volume | 136 |
| DOIs | |
| State | Published - Dec 2021 |
| Externally published | Yes |
Keywords
- Chemotherapy
- Controlled release
- Hydrogel
- Immunotherapy
- Liposome