TY - JOUR
T1 - Mesenchymal Stromal Cells Primed by Toll-like Receptors 3 and 4 Enhanced Anti-Inflammatory Effects against LPS-Induced Macrophages via Extracellular Vesicles
AU - Hwang, Sein
AU - Sung, Dong Kyung
AU - Kim, Young Eun
AU - Yang, Misun
AU - Ahn, So Yoon
AU - Sung, Se In
AU - Chang, Yun Sil
N1 - Publisher Copyright:
© 2023 by the authors.
PY - 2023/11
Y1 - 2023/11
N2 - Although it has been suggested that toll-like receptor (TLR) 3 and TLR4 activation alters mesenchymal stromal cells (MSCs)’ immunoregulatory function as anti- or pro-inflammatory phenotypes, we have previously confirmed that TLR4-primed hUCB-MSCs alleviate lung inflammation and tissue injury in an E. coli-induced acute lung injury (ALI) mouse model. Therefore, we hypothesized that strong stimulation of TLR3 or TLR4 prompts hUCB-MSCs to exhibit an anti-inflammatory phenotype mediated by extracellular vesicles (EVs). In this study, we compared the anti-inflammatory effect of TLR3-primed and TLR4-primed hUCB-MSCs against an LPS-induced ALI in vitro model by treating MSCs, MSC-derived conditioned medium (CM), and MSC-derived extracellular vesicles (EVs). LPS-induced rat primary alveolar macrophage and RAW 264.7 cells were treated with naïve, TLR3-, and TLR4-primed MSCs and their derived CM and EVs. Flow cytometry and ELISA were used to evaluate M1-M2 polarization of macrophages and pro-inflammatory cytokine levels, respectively. LPS-stimulated macrophages showed significantly increased pro-inflammatory cytokines compared to those of the normal control, and the percentage of M2 macrophage phenotype was predominantly low. In reducing the inflammatory cytokines and enhancing M2 polarization, TLR3- and TLR4-primed MSCs were significantly more effective than the naïve MSCs, and this finding was also observed with the treatment of MSC-derived CMs and EVs. No significant difference between the efficacy of TLR3- and TLR-primed MSCs was observed. Strong stimulation of TLR3- and TLR4-stimulated hUCB-MSCs significantly reduced pro-inflammatory cytokine secretion from LPS-induced macrophages and significantly enhanced the M2 polarization of macrophages. We further confirmed that TLR-primed MSC-derived EVs can exert anti-inflammatory and immunosuppressive effects alone comparable to MSC treatment. We hereby suggest that in the LPS-induced macrophage in vitro model, EVs derived from both TLR3 and TLR4-primed MSCs can be a therapeutic candidate by promoting the M2 phenotype.
AB - Although it has been suggested that toll-like receptor (TLR) 3 and TLR4 activation alters mesenchymal stromal cells (MSCs)’ immunoregulatory function as anti- or pro-inflammatory phenotypes, we have previously confirmed that TLR4-primed hUCB-MSCs alleviate lung inflammation and tissue injury in an E. coli-induced acute lung injury (ALI) mouse model. Therefore, we hypothesized that strong stimulation of TLR3 or TLR4 prompts hUCB-MSCs to exhibit an anti-inflammatory phenotype mediated by extracellular vesicles (EVs). In this study, we compared the anti-inflammatory effect of TLR3-primed and TLR4-primed hUCB-MSCs against an LPS-induced ALI in vitro model by treating MSCs, MSC-derived conditioned medium (CM), and MSC-derived extracellular vesicles (EVs). LPS-induced rat primary alveolar macrophage and RAW 264.7 cells were treated with naïve, TLR3-, and TLR4-primed MSCs and their derived CM and EVs. Flow cytometry and ELISA were used to evaluate M1-M2 polarization of macrophages and pro-inflammatory cytokine levels, respectively. LPS-stimulated macrophages showed significantly increased pro-inflammatory cytokines compared to those of the normal control, and the percentage of M2 macrophage phenotype was predominantly low. In reducing the inflammatory cytokines and enhancing M2 polarization, TLR3- and TLR4-primed MSCs were significantly more effective than the naïve MSCs, and this finding was also observed with the treatment of MSC-derived CMs and EVs. No significant difference between the efficacy of TLR3- and TLR-primed MSCs was observed. Strong stimulation of TLR3- and TLR4-stimulated hUCB-MSCs significantly reduced pro-inflammatory cytokine secretion from LPS-induced macrophages and significantly enhanced the M2 polarization of macrophages. We further confirmed that TLR-primed MSC-derived EVs can exert anti-inflammatory and immunosuppressive effects alone comparable to MSC treatment. We hereby suggest that in the LPS-induced macrophage in vitro model, EVs derived from both TLR3 and TLR4-primed MSCs can be a therapeutic candidate by promoting the M2 phenotype.
KW - mesenchymal stromal cell
UR - https://www.scopus.com/pages/publications/85177785933
U2 - 10.3390/ijms242216264
DO - 10.3390/ijms242216264
M3 - Article
C2 - 38003458
AN - SCOPUS:85177785933
SN - 1661-6596
VL - 24
JO - International Journal of Molecular Sciences
JF - International Journal of Molecular Sciences
IS - 22
M1 - 16264
ER -