TY - JOUR
T1 - Marine-Derived Secondary Metabolite, Griseusrazin A, Suppresses Inflammation through Heme Oxygenase-1 Induction in Activated RAW264.7 Macrophages
AU - Lee, Dong Sung
AU - Yoon, Chi Su
AU - Jung, Yong Taek
AU - Yoon, Jung Hoon
AU - Kim, Youn Chul
AU - Oh, Hyuncheol
N1 - Publisher Copyright:
© 2016 The American Chemical Society and American Society of Pharmacognosy.
PY - 2016/4/22
Y1 - 2016/4/22
N2 - A new secondary metabolite, named griseusrazin A (1), was isolated from the marine-derived bacterium Streptomyces griseus subsp. griseus. The structure of the compound was determined by analysis of spectroscopic data including MS, COSY, HSQC, HMBC, and 15N-HMBC data. Griseusrazin A (1) inhibited the production of inflammatory mediators, such as prostaglandin E2 and nitric oxide, which was mediated through the suppression of the expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. The production of pro-inflammatory cytokines, such as interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α, in the LPS-stimulated cells was also effectively blocked by griseusrazin A (1). Furthermore, this anti-inflammatory activity of 1 was linked to its inhibitory effects against the nuclear translocation of NF-κB p50 and p65, as wells as NF-κB binding activity. In the further study to elucidate the anti-inflammatory mechanism, 1 was shown to induce heme oxygenase-1 (HO-1) expression through the enhancement of nuclear translocation of nuclear factor E2-related factor 2. Furthermore, the anti-inflammatory activity of 1 in the LPS-stimulated cells was partially reversed by an HO inhibitor, tin protoporphyrin. These results indicate that the anti-inflammatory effect of 1 is associated with Nrf2-mediated HO-1 expression.
AB - A new secondary metabolite, named griseusrazin A (1), was isolated from the marine-derived bacterium Streptomyces griseus subsp. griseus. The structure of the compound was determined by analysis of spectroscopic data including MS, COSY, HSQC, HMBC, and 15N-HMBC data. Griseusrazin A (1) inhibited the production of inflammatory mediators, such as prostaglandin E2 and nitric oxide, which was mediated through the suppression of the expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. The production of pro-inflammatory cytokines, such as interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α, in the LPS-stimulated cells was also effectively blocked by griseusrazin A (1). Furthermore, this anti-inflammatory activity of 1 was linked to its inhibitory effects against the nuclear translocation of NF-κB p50 and p65, as wells as NF-κB binding activity. In the further study to elucidate the anti-inflammatory mechanism, 1 was shown to induce heme oxygenase-1 (HO-1) expression through the enhancement of nuclear translocation of nuclear factor E2-related factor 2. Furthermore, the anti-inflammatory activity of 1 in the LPS-stimulated cells was partially reversed by an HO inhibitor, tin protoporphyrin. These results indicate that the anti-inflammatory effect of 1 is associated with Nrf2-mediated HO-1 expression.
UR - https://www.scopus.com/pages/publications/84966770486
U2 - 10.1021/acs.jnatprod.6b00009
DO - 10.1021/acs.jnatprod.6b00009
M3 - Article
C2 - 27019105
AN - SCOPUS:84966770486
SN - 0163-3864
VL - 79
SP - 1105
EP - 1111
JO - Journal of Natural Products
JF - Journal of Natural Products
IS - 4
ER -