Abstract
Highly efficient and long-living green thermally activated delayed fluorescence (TADF) organic light-emitting diodes (OLEDs) were developed using benzothienopyrimidine-4-benzonitrile acceptor-derived compounds as the TADF emitters. A molecular design merging the benzothienopyrimidine-4-benzonitrile acceptor with either indolocarbazole or diindolocarbazole was employed to prepare two TADF emitters, 5-(2-phenylbenzo[4,5]thieno[3,2-d]pyrimidin-4-yl)-2-(5-phenylindolo[3,2-a]carbazol-12(5H)-yl)benzonitrile and 2-(10,15-diphenyl-10,15-dihydro-5H-diindolo[3,2-a:3′,2′-c]carbazol-5-yl)-5-(2-phenylbenzo[4,5]thieno[3,2-d]pyrimidin-4-yl)benzonitrile (BTPDIDCz), as the green and greenish-yellow emitters. Among the two emitters, BTPDIDCz with the diindolocarbazole donor combined with the benzothienopyrimidine-4-benzonitrile acceptor demonstrated a high external quantum efficiency of 24.5% and 3 times longer device lifetime than the state-of-the-art green emitter. This work proposed the potential of benzothienopyrimidine-4-benzonitrile as the acceptor for long lifetime in TADF emitters.
| Original language | English |
|---|---|
| Pages (from-to) | 2908-2918 |
| Number of pages | 11 |
| Journal | ACS Applied Materials and Interfaces |
| Volume | 13 |
| Issue number | 2 |
| DOIs | |
| State | Published - 20 Jan 2021 |
Keywords
- delayed fluorescence
- efficiency
- electron acceptor
- lifetime
- OLED