Laser-generated focused ultrasound transmitters with frequency-tuned outputs over sub-10-MHz range

Min Gyu Joo, Kyu Tae Lee, Pilgyu Sang, Jeongmin Heo, Hui Joon Park, Hyoung Won Baac

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

Previous laser-generated focused ultrasound (LGFU) systems have been operated with >15 MHz frequency, allowing for high spatial precision (<100 μm). However, they have been limited only to proximal biomedical applications ex vivo with treatment depths smaller than 10 mm from the lens surface. Although the low-megahertz frequency operation has the advantage of a longer range of therapy, this requires a proper photoacoustic lens made of a nanocomposite coating over a spherically curved substrate whose transmission layer is physically designed for frequency-tuned outputs. This demands a fabrication method that can provide such a nanocomposite structure. We demonstrate photoacoustic lenses operated in an unexplored frequency range of 1-10 MHz, which can simultaneously produce high-amplitude pressure outputs sufficient for pulsed acoustic cavitation. We physically design a spatially elongated photoacoustic output and then fabricate a transmitter by controlling the density of light-absorbing nanoscale elements in a solution form and by using a replica mold to shape the lens curvature. Our approach is validated by fabricating and characterizing planar transmitters and then applied to focal configurations. This offers various possibilities for LGFU-based treatments (e.g., pulsed cavitational therapy such as histotripsy) over the low-megahertz frequency range, which has not been realized by conventional LGFU systems.

Original languageEnglish
Article number154103
JournalApplied Physics Letters
Volume115
Issue number15
DOIs
StatePublished - 7 Oct 2019

Fingerprint

Dive into the research topics of 'Laser-generated focused ultrasound transmitters with frequency-tuned outputs over sub-10-MHz range'. Together they form a unique fingerprint.

Cite this