Kinetic Resolution of β-Hydroxy Carbonyl Compounds via Enantioselective Dehydration Using a Cation-Binding Catalyst: Facile Access to Enantiopure Chiral Aldols

Sushovan Paladhi, In Soo Hwang, Eun Jeong Yoo, Do Hyun Ryu, Choong Eui Song

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

A practical and highly enantioselective nonenzymatic kinetic resolution of racemic β-hydroxy carbonyl (aldol) compounds through enantioselective dehydration process was developed using a cation-binding Song's oligoethylene glycol (oligoEG) catalyst with potassium fluoride (KF) as base. A wide range of racemic aldols was resolved with extremely high selectivity factors (s = up to 2393) under mild reaction conditions. This protocol is easily scalable. It provides an alternative approach for the syntheses of diverse biologically and pharmaceutically relevant chiral aldols in enantiomerically pure form. For example, racemic gingerols could participate in this kinetic resolution with superb efficiency (s > 240), affording both enantiomerically pure gingerols and corresponding shogaols simultaneously in a single step. The dramatic effectiveness of such kinetic resolution process can be ascribed to systematic cooperative hydrogen-bonding catalysis in a densely confined supramolecular chiral cage in situ generated from the chiral catalyst, substrate, and KF.

Original languageEnglish
Pages (from-to)2003-2006
Number of pages4
JournalOrganic Letters
Volume20
Issue number7
DOIs
StatePublished - 6 Apr 2018

Fingerprint

Dive into the research topics of 'Kinetic Resolution of β-Hydroxy Carbonyl Compounds via Enantioselective Dehydration Using a Cation-Binding Catalyst: Facile Access to Enantiopure Chiral Aldols'. Together they form a unique fingerprint.

Cite this