TY - JOUR
T1 - Investigation of abrasive behavior between pad asperity and oxide thin film in chemical mechanical planarization
AU - Jeon, Sanghuck
AU - Lee, Jungryul
AU - Hong, Seokjun
AU - Seo, Hyeonmin
AU - Cho, Yeongkwang
AU - Liu, Pengzhan
AU - Park, Kihong
AU - Kim, Taesung
N1 - Publisher Copyright:
© 2021 Elsevier Ltd
PY - 2022/2
Y1 - 2022/2
N2 - In this paper, tribological effects on the material removal rate (MRR) are investigated using two types of slurry abrasives (i.e., ceria and silica) and three types of pads. From a micro to macro viewpoint, the physico-chemical interaction between the pad-wafer interface and abrasive was studied based on multi-asperity contact. First, the relative contact pressure in high or low proportions among all asperities was calculated using a contact mechanics model. The results indicate that for the commercial slurry used in the semiconductor industry, relatively high contact pressure due to the asperities can be transferred to the ceria abrasives, and only a low contact pressure can be supported by these silica abrasives. Furthermore, it was confirmed that the two different slurry abrasives showed opposite behaviors according to the real contact area of the pad asperities. That is, as the pad texture changed from ‘Desired pad’ to ‘Smoothed pad’, the MRR of the ceria increased by 47%, while the MRR of the silica decreased 59%. Lastly, the Stribeck curve, which is suitable for the CMP process, was re-analyzed to clarify the abrasion mechanism under the pad asperity scale. The results showed that two-body abrasion may be maintained for the ceria CMP, and transition is possible from two-body to three-body abrasion at the silica CMP as the contact area increases. The present paper is expected to clarify the tribological mechanism of the oxide CMP and can provide further insight into optimizing and selecting consumables such as conditioner, pad, and slurry.
AB - In this paper, tribological effects on the material removal rate (MRR) are investigated using two types of slurry abrasives (i.e., ceria and silica) and three types of pads. From a micro to macro viewpoint, the physico-chemical interaction between the pad-wafer interface and abrasive was studied based on multi-asperity contact. First, the relative contact pressure in high or low proportions among all asperities was calculated using a contact mechanics model. The results indicate that for the commercial slurry used in the semiconductor industry, relatively high contact pressure due to the asperities can be transferred to the ceria abrasives, and only a low contact pressure can be supported by these silica abrasives. Furthermore, it was confirmed that the two different slurry abrasives showed opposite behaviors according to the real contact area of the pad asperities. That is, as the pad texture changed from ‘Desired pad’ to ‘Smoothed pad’, the MRR of the ceria increased by 47%, while the MRR of the silica decreased 59%. Lastly, the Stribeck curve, which is suitable for the CMP process, was re-analyzed to clarify the abrasion mechanism under the pad asperity scale. The results showed that two-body abrasion may be maintained for the ceria CMP, and transition is possible from two-body to three-body abrasion at the silica CMP as the contact area increases. The present paper is expected to clarify the tribological mechanism of the oxide CMP and can provide further insight into optimizing and selecting consumables such as conditioner, pad, and slurry.
KW - Chemical mechanical planarization (CMP)
KW - Oxide CMP
KW - Pad asperity
UR - https://www.scopus.com/pages/publications/85118593764
U2 - 10.1016/j.mssp.2021.106280
DO - 10.1016/j.mssp.2021.106280
M3 - Article
AN - SCOPUS:85118593764
SN - 1369-8001
VL - 138
JO - Materials Science in Semiconductor Processing
JF - Materials Science in Semiconductor Processing
M1 - 106280
ER -