TY - JOUR
T1 - Influence of hydrogen doping of In2O3-based transparent conducting oxide films on silicon heterojunction solar cells
AU - Park, Hyeong Gi
AU - Hussain, Shahzada Qamar
AU - Park, Jinjoo
AU - Yi, Junsin
N1 - Publisher Copyright:
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024.
PY - 2024/8
Y1 - 2024/8
N2 - We report the influence of hydrogen doping of In2O3-based transparent conducting oxide (TCO) films, including indium tin oxide (ITO), hydrogenated ITO (ITO:H), In2O3 (IO), and hydrogenated In2O3 (IO:H), using radio-frequency magnetron sputtering for SHJ solar cells. The purpose of hydrogen doping is to improve the sheet resistance and work function, while Ar-based ITO films play a critical role in maintaining the electrical and optical properties. The thickness of all TCO films was fixed at 100 nm, which showed the lowest sheet resistance of 34 Ω/sq for the IO:H films. All the films showed an average transmission of more than 87% in the visible-wavelength (400–800 nm) region. The work function was enhanced from 4.96 to 5.45 eV with a hydrogen of 3 sccm. SHJ solar cells using IO:H films achieved an efficiency of 23.6% with an open-circuit voltage (VOC) of 736 mV, a current density (JSC) of 38.83 mA/cm2 and a fill factor (FF) of 82.62%. We performed an improvement in the conversion efficiency of the device with a simulation using the AFORS-HET (automatic for the simulation of heterostructures) program. The efficiency achieved was 25.41% when VOC = 729 mV, JSC = 41.3 mA/cm2, FF = 84.42%.
AB - We report the influence of hydrogen doping of In2O3-based transparent conducting oxide (TCO) films, including indium tin oxide (ITO), hydrogenated ITO (ITO:H), In2O3 (IO), and hydrogenated In2O3 (IO:H), using radio-frequency magnetron sputtering for SHJ solar cells. The purpose of hydrogen doping is to improve the sheet resistance and work function, while Ar-based ITO films play a critical role in maintaining the electrical and optical properties. The thickness of all TCO films was fixed at 100 nm, which showed the lowest sheet resistance of 34 Ω/sq for the IO:H films. All the films showed an average transmission of more than 87% in the visible-wavelength (400–800 nm) region. The work function was enhanced from 4.96 to 5.45 eV with a hydrogen of 3 sccm. SHJ solar cells using IO:H films achieved an efficiency of 23.6% with an open-circuit voltage (VOC) of 736 mV, a current density (JSC) of 38.83 mA/cm2 and a fill factor (FF) of 82.62%. We performed an improvement in the conversion efficiency of the device with a simulation using the AFORS-HET (automatic for the simulation of heterostructures) program. The efficiency achieved was 25.41% when VOC = 729 mV, JSC = 41.3 mA/cm2, FF = 84.42%.
UR - https://www.scopus.com/pages/publications/85199769837
U2 - 10.1007/s10853-024-09506-7
DO - 10.1007/s10853-024-09506-7
M3 - Article
AN - SCOPUS:85199769837
SN - 0022-2461
VL - 59
SP - 13873
EP - 13882
JO - Journal of Materials Science
JF - Journal of Materials Science
IS - 30
ER -