TY - JOUR
T1 - Induction of fibronectin by HER2 overexpression triggers adhesion and invasion of breast cancer cells
AU - Jeon, Myeongjin
AU - Lee, Jeongmin
AU - Nam, S. J.
AU - Shin, Incheol
AU - Lee, J. E.
AU - Kim, Sangmin
N1 - Publisher Copyright:
© 2015 Elsevier Inc.
PY - 2015/4/10
Y1 - 2015/4/10
N2 - Fibronectin (FN), an extracellular matrix ligand, plays a pivotal role in cell adhesion, migration, and oncogenic transformation. Aberrant FN expression is associated with poor prognoses in various types of cancer, including breast cancer. In the current study, we investigated the relationship between FN induction and HER2 expression in breast cancer cells. Our results showed that the level of FN expression increased in response to HER family ligands, EGF and TGF-α in a time- and dose-dependent manner. On the other hand, EGF-induced FN expression decreased in response to trastuzumab, which is a HER2-targeted monoclonal antibody. However, EGF-induced FN expression was not affected by trastuzumab in JIMT-1 breast cancer cells, which are trastuzumab insensitive cells. Next, we introduced the HER2 gene into MDA-MB231 cells to verify the relationship between FN and HER2. The level of FN expression significantly increased in HER2-overexpressed MDA-MB231 cells. In contrast, the induction of FN by HER2 was significantly decreased in response to trastuzumab treatment. In addition, the induction of FN by HER2 was down-regulated by the MEK 1/2 specific inhibitor, U0126. Using conditioned culture media of vec- and HER2-overexpressed MDA-MB231 cells, we observed the cell morphology, adhesion, and invasion of MDA-MB231 cells. Interestingly, in conditioned culture media of HER2-overexpressed MDA-MB231 cells, the cell morphology was altered, and adhesion and invasion of MDA-MB231 cells significantly increased. In addition, our results showed that recombinant human FN augmented cell adhesion and invasion of MDA-MB231 cells while these inductions decreased in response to an FN inhibitor. Therefore, we demonstrated that the induction of FN by HER2 triggers cell adhesion and invasion capacities.
AB - Fibronectin (FN), an extracellular matrix ligand, plays a pivotal role in cell adhesion, migration, and oncogenic transformation. Aberrant FN expression is associated with poor prognoses in various types of cancer, including breast cancer. In the current study, we investigated the relationship between FN induction and HER2 expression in breast cancer cells. Our results showed that the level of FN expression increased in response to HER family ligands, EGF and TGF-α in a time- and dose-dependent manner. On the other hand, EGF-induced FN expression decreased in response to trastuzumab, which is a HER2-targeted monoclonal antibody. However, EGF-induced FN expression was not affected by trastuzumab in JIMT-1 breast cancer cells, which are trastuzumab insensitive cells. Next, we introduced the HER2 gene into MDA-MB231 cells to verify the relationship between FN and HER2. The level of FN expression significantly increased in HER2-overexpressed MDA-MB231 cells. In contrast, the induction of FN by HER2 was significantly decreased in response to trastuzumab treatment. In addition, the induction of FN by HER2 was down-regulated by the MEK 1/2 specific inhibitor, U0126. Using conditioned culture media of vec- and HER2-overexpressed MDA-MB231 cells, we observed the cell morphology, adhesion, and invasion of MDA-MB231 cells. Interestingly, in conditioned culture media of HER2-overexpressed MDA-MB231 cells, the cell morphology was altered, and adhesion and invasion of MDA-MB231 cells significantly increased. In addition, our results showed that recombinant human FN augmented cell adhesion and invasion of MDA-MB231 cells while these inductions decreased in response to an FN inhibitor. Therefore, we demonstrated that the induction of FN by HER2 triggers cell adhesion and invasion capacities.
KW - Adhesion
KW - Fibronectin
KW - HER2
KW - Invasion
KW - Trastuzumab
UR - https://www.scopus.com/pages/publications/84926420659
U2 - 10.1016/j.yexcr.2015.02.019
DO - 10.1016/j.yexcr.2015.02.019
M3 - Article
C2 - 25743092
AN - SCOPUS:84926420659
SN - 0014-4827
VL - 333
SP - 116
EP - 126
JO - Experimental Cell Research
JF - Experimental Cell Research
IS - 1
ER -