TY - JOUR
T1 - Improving passivation properties using a nano-crystalline silicon oxide layer for high-efficiency TOPCon cells
AU - Khokhar, Muhammad Quddamah
AU - Chowdhury, Sanchari
AU - Pham, Duy Phong
AU - Hussain, Shahzada Qamar
AU - Cho, Eun Chel
AU - Yi, Junsin
N1 - Publisher Copyright:
© 2021 Elsevier B.V.
PY - 2021/6
Y1 - 2021/6
N2 - High conversion efficiency can achieve by superior surface passivation and material quality. In this study, a novel passivation contact structure based on nanocrystalline silicon oxide (nc-SiOx) films was investigated. Traditionally, poly silicon junctions in tunnel oxide passivated contact (TOPCon) solar cells possess exceptional junction characteristics, but current losses are noted due to their optical absorption if they are applied in solar cell devices. In this study, we replaced the poly-Si layer in TOPCon solar cells with nc-SiOx to enhance transparency. By employing the nc-SiOx layer, effective surface passivation, carrier selectivity, electrical properties and optical transmission can be used to improve, all are vitally important in devise operation. We optimized the deposited nc-SiOx layer on an ultra-thin (~1.5 nm) silicon dioxide (SiO2) tunnel oxide layer to improve recombination current density and carrier lifetime. The passivation characteristics were improved by varying the annealing temperature and thickness of the nc-SiOx layer. The 50 nm thick nc-SiOx layer was capable of yielding a high implied open-circuit voltage (i-Voc) of 739 mV and low contact resistivity (ρ) of 14.2 (mΩ/cm2) in addition to a low depleted recombination current density (Jo) of 1.1 fA/cm2 with a post-deposition annealing temperature up to 950 °C. Improved passivation characteristics are the result of a more prominent annealing temperature. Our proposed technique has immense potential for achieving higher efficiency for fabricating various structures of TOPCon solar cells. As per AFORST Het simulation results by using nc-SiOx for TOPCon structure, we got Voc of 761.5 mV, Jsc of 43.5 mA/cm2, FF of 83%, and η of 27.49%, respectively.
AB - High conversion efficiency can achieve by superior surface passivation and material quality. In this study, a novel passivation contact structure based on nanocrystalline silicon oxide (nc-SiOx) films was investigated. Traditionally, poly silicon junctions in tunnel oxide passivated contact (TOPCon) solar cells possess exceptional junction characteristics, but current losses are noted due to their optical absorption if they are applied in solar cell devices. In this study, we replaced the poly-Si layer in TOPCon solar cells with nc-SiOx to enhance transparency. By employing the nc-SiOx layer, effective surface passivation, carrier selectivity, electrical properties and optical transmission can be used to improve, all are vitally important in devise operation. We optimized the deposited nc-SiOx layer on an ultra-thin (~1.5 nm) silicon dioxide (SiO2) tunnel oxide layer to improve recombination current density and carrier lifetime. The passivation characteristics were improved by varying the annealing temperature and thickness of the nc-SiOx layer. The 50 nm thick nc-SiOx layer was capable of yielding a high implied open-circuit voltage (i-Voc) of 739 mV and low contact resistivity (ρ) of 14.2 (mΩ/cm2) in addition to a low depleted recombination current density (Jo) of 1.1 fA/cm2 with a post-deposition annealing temperature up to 950 °C. Improved passivation characteristics are the result of a more prominent annealing temperature. Our proposed technique has immense potential for achieving higher efficiency for fabricating various structures of TOPCon solar cells. As per AFORST Het simulation results by using nc-SiOx for TOPCon structure, we got Voc of 761.5 mV, Jsc of 43.5 mA/cm2, FF of 83%, and η of 27.49%, respectively.
KW - High efficiency
KW - nc-SiO
KW - Passivation characteristics
KW - Poly-Si
KW - TOPCon solar cells
UR - https://www.scopus.com/pages/publications/85103636085
U2 - 10.1016/j.infrared.2021.103723
DO - 10.1016/j.infrared.2021.103723
M3 - Article
AN - SCOPUS:85103636085
SN - 1350-4495
VL - 115
JO - Infrared Physics and Technology
JF - Infrared Physics and Technology
M1 - 103723
ER -