Abstract
Impact of strain of sub-3 nm gate-all-around (GAA) CMOS transistors on the circuit performance is evaluated using a neural compact model. The model was trained using 3D technology computer-aided design (TCAD) device simulation data of GAA field-effect transistors (FETs) subjected to both tensile and compressive strain in nMOS and pMOS devices. Strain was induced into the channel via lattice mismatch between the channel and source/drain epitaxial regions, as simulated by 3D TCAD process simulator. The transport models were calibrated against advanced Monte Carlo simulations to ensure accuracy. The resulting neural compact model demonstrated a close approximation to the original simulation results, achieving a minimal error of 1%. To assess the strain effect on circuit-level performance, SPICE simulations were conducted for a 5-stage ring oscillator and a 2-input NAND gate using the neural compact model. The propagation delay of the 5-stage ring oscillator improved from 3.60 ps to 2.85 ps when implementing strained GAA FETs. Also, strain enhanced the power-delay product of the 2-input NAND gate by 13.8% to 15.5%, depending on the input voltage sequence.
| Original language | English |
|---|---|
| Pages (from-to) | 770-774 |
| Number of pages | 5 |
| Journal | IEEE Journal of the Electron Devices Society |
| Volume | 12 |
| DOIs | |
| State | Published - 2024 |
| Externally published | Yes |
Keywords
- circuit performance
- gate-all-around CMOS
- neural compact model
- Strain engineering