Fourier Multipliers on a Vector-Valued Function Space

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

We study multiplier theorems on a vector-valued function space, which is a generalization of the results of Calderón and Torchinsky, and Grafakos, He, Honzík, and Nguyen, and an improvement of the result of Triebel. For 0 < p< ∞ and 0 < q≤ ∞ we obtain that if r>ds-(d/min(1,p,q)-d), then ‖{(mkfk^)∨}k∈Z‖Lp(ℓq)≲p,qsupl∈Z‖ml(2l·)‖Lsr(Rd)‖{fk}k∈Z‖Lp(ℓq),fk∈E(A2k),under the condition max (| d/ p- d/ 2 | , | d/ q- d/ 2 |) < s< d/ min (1 , p, q). An extension to p= ∞ will be additionally considered in the scale of Triebel–Lizorkin space. Our result is sharp in the sense that the Sobolev space in the above estimate cannot be replaced by Sobolev spaces Lsr with r≤ds-(d/min(1,p,q)-d).

Original languageEnglish
Pages (from-to)705-741
Number of pages37
JournalConstructive Approximation
Volume55
Issue number2
DOIs
StatePublished - Apr 2022
Externally publishedYes

Keywords

  • Hörmander’s multiplier theorem
  • Littlewood–Paley theory
  • Triebel–Lizorkin space
  • Vector-valued function space

Fingerprint

Dive into the research topics of 'Fourier Multipliers on a Vector-Valued Function Space'. Together they form a unique fingerprint.

Cite this