TY - JOUR
T1 - Fourier Multipliers on a Vector-Valued Function Space
AU - Park, Bae Jun
N1 - Publisher Copyright:
© 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature.
PY - 2022/4
Y1 - 2022/4
N2 - We study multiplier theorems on a vector-valued function space, which is a generalization of the results of Calderón and Torchinsky, and Grafakos, He, Honzík, and Nguyen, and an improvement of the result of Triebel. For 0 < p< ∞ and 0 < q≤ ∞ we obtain that if r>ds-(d/min(1,p,q)-d), then ‖{(mkfk^)∨}k∈Z‖Lp(ℓq)≲p,qsupl∈Z‖ml(2l·)‖Lsr(Rd)‖{fk}k∈Z‖Lp(ℓq),fk∈E(A2k),under the condition max (| d/ p- d/ 2 | , | d/ q- d/ 2 |) < s< d/ min (1 , p, q). An extension to p= ∞ will be additionally considered in the scale of Triebel–Lizorkin space. Our result is sharp in the sense that the Sobolev space in the above estimate cannot be replaced by Sobolev spaces Lsr with r≤ds-(d/min(1,p,q)-d).
AB - We study multiplier theorems on a vector-valued function space, which is a generalization of the results of Calderón and Torchinsky, and Grafakos, He, Honzík, and Nguyen, and an improvement of the result of Triebel. For 0 < p< ∞ and 0 < q≤ ∞ we obtain that if r>ds-(d/min(1,p,q)-d), then ‖{(mkfk^)∨}k∈Z‖Lp(ℓq)≲p,qsupl∈Z‖ml(2l·)‖Lsr(Rd)‖{fk}k∈Z‖Lp(ℓq),fk∈E(A2k),under the condition max (| d/ p- d/ 2 | , | d/ q- d/ 2 |) < s< d/ min (1 , p, q). An extension to p= ∞ will be additionally considered in the scale of Triebel–Lizorkin space. Our result is sharp in the sense that the Sobolev space in the above estimate cannot be replaced by Sobolev spaces Lsr with r≤ds-(d/min(1,p,q)-d).
KW - Hörmander’s multiplier theorem
KW - Littlewood–Paley theory
KW - Triebel–Lizorkin space
KW - Vector-valued function space
UR - https://www.scopus.com/pages/publications/85102249684
U2 - 10.1007/s00365-021-09526-5
DO - 10.1007/s00365-021-09526-5
M3 - Article
AN - SCOPUS:85102249684
SN - 0176-4276
VL - 55
SP - 705
EP - 741
JO - Constructive Approximation
JF - Constructive Approximation
IS - 2
ER -