Abstract
This investigation aimed to introduce printing technology for the first time to prepare a nanostrucutured PbO2 electrode and its application to a cerium redox transfer process. The new method of nano-size PbO2 preparation demonstrated that nano-PbO2 could be obtained in less time and at less cost at room temperature. The prepared nano-PbO2 screen printed on a Ti electrode by three different compositions under similar conditions showed through surface and electrochemical analyses no adherence on Ti and no contact with other nano-PbO2 particles. Gravure printing of nano-PbO2 on a PET (poly ethylene thin) film at high pressure was done with two different compositions for the first time. The selective composition of 57.14 % nano-PbO2 powder with 4.28 % carbon black and 38.58 % ECA (ethyl carbitol acetate) produced a film with a nanoporous structure with an electron transfer ability. Finally, the optimized gravure-printed nano-PbO2 electrode was applied to the oxidation of Ce(III) to Ce(IV) by using cyclic voltammetry. The gravure-printed nano-PbO2 should pave the way to promising applications in electrochemical and sensor fields.
| Original language | English |
|---|---|
| Pages (from-to) | 372-376 |
| Number of pages | 5 |
| Journal | Journal of the Korean Physical Society |
| Volume | 65 |
| Issue number | 3 |
| DOIs | |
| State | Published - Aug 2014 |
| Externally published | Yes |
Keywords
- Gravure printing
- Nano-structure electrode
- Screen printing