Abstract
In this work, we have synthesized Pd/MoS2 samples in which about 7 nm sized Pd NPs are formed on a MoS2 surface with the Pd content varied from 14.4 wt% to 33.6 wt% and studied their electrocatalytic activity for oxygen reduction reaction (ORR) in an alkaline medium. The syntheses were achieved by single-step sonochemical reactions between palladium acetylacetonate and 2H-MoS2 in ethylene glycol. Based on the structural characterization data, the Pd NPs are firstly grown epitaxially on the MoS2 surface in the [1-10]Pd[100]MoS2 and (111)Pd(001)MoS2 relationship. As the Pd-content increases, Pd NPs are formed on top of the first layer of Pd NPs as well as on the available MoS2 surface. The epitaxially grown Pd NPs experience a tensile strain and charge-transfer to MoS2, which raises the d-band center of Pd, lowering the on-set potential in ORR. On the other hand, the enhanced adsorption of O2 on MoS2 can facilitate the ORR kinetics of Pd NPs. The observed ORR data on Pd/MoS2 can be explained as the net result of these two opposing effects of the MoS2 support.
| Original language | English |
|---|---|
| Pages (from-to) | 47468-47473 |
| Number of pages | 6 |
| Journal | RSC Advances |
| Volume | 6 |
| Issue number | 53 |
| DOIs | |
| State | Published - 2016 |