TY - JOUR
T1 - Enrichment of titin-truncating variants in exon 327 in dilated cardiomyopathy and its relevance to reduced nonsense-mediated mRNA decay efficiency
AU - Kim, Young Gon
AU - Ha, Changhee
AU - Shin, Sunghwan
AU - Park, Jong Ho
AU - Jang, Ja Hyun
AU - Kim, Jong Won
N1 - Publisher Copyright:
Copyright © 2023 Kim, Ha, Shin, Park, Jang and Kim.
PY - 2023/1/4
Y1 - 2023/1/4
N2 - Titin truncating variants (TTNtvs) are the most common genetic cause of dilated cardiomyopathy (DCM). Among four regions of titin, A-band enrichment of DCM-causing TTNtvs is widely accepted but the underlying mechanism is still unknown. Meanwhile, few reports have identified exon 327 as a highly mutated A-band exon but the degree of exon 327 enrichment has not been quantitatively investigated. To find the real hotspot of DCM-causing TTNtvs, we aimed to reassess the degree of TTNtv enrichment in known titin regions and in exon 327, separately. In addition, we tried to explain exon 327 clustering in terms of nonsense-mediated mRNA decay (NMD) efficiency and a dominant negative mechanism recently proposed. Research papers focusing on TTNtvs found in patients with DCM were collected. A total of 612 patients with TTNtv-realated DCM were obtained from 10 studies. In the four regions of TTN and exon 327, the degree of TTNtvs enrichment was calculated in a way that the effect of distribution of highly expressed exons was normalized. As a result, exon 327 was the only region that showed significant enrichment for DCM-related TTNtv (p <.001). On the other hand, other A-band exons had almost the same number of TTNtv of random distribution. A review of RNAseq data revealed that the median allelic imbalance deviation of exon 327 TTNtvs was.04, indicating almost zero NMD. From these findings, we propose that the widely accepted A-band enrichment of DCM-related TTNtv is mostly attributable to exon 327 enrichment. In addition, based on the recently demonstrated dominant negative mechanism, the extremely low NMD efficiency seems to contribute to exon 327 enrichment.
AB - Titin truncating variants (TTNtvs) are the most common genetic cause of dilated cardiomyopathy (DCM). Among four regions of titin, A-band enrichment of DCM-causing TTNtvs is widely accepted but the underlying mechanism is still unknown. Meanwhile, few reports have identified exon 327 as a highly mutated A-band exon but the degree of exon 327 enrichment has not been quantitatively investigated. To find the real hotspot of DCM-causing TTNtvs, we aimed to reassess the degree of TTNtv enrichment in known titin regions and in exon 327, separately. In addition, we tried to explain exon 327 clustering in terms of nonsense-mediated mRNA decay (NMD) efficiency and a dominant negative mechanism recently proposed. Research papers focusing on TTNtvs found in patients with DCM were collected. A total of 612 patients with TTNtv-realated DCM were obtained from 10 studies. In the four regions of TTN and exon 327, the degree of TTNtvs enrichment was calculated in a way that the effect of distribution of highly expressed exons was normalized. As a result, exon 327 was the only region that showed significant enrichment for DCM-related TTNtv (p <.001). On the other hand, other A-band exons had almost the same number of TTNtv of random distribution. A review of RNAseq data revealed that the median allelic imbalance deviation of exon 327 TTNtvs was.04, indicating almost zero NMD. From these findings, we propose that the widely accepted A-band enrichment of DCM-related TTNtv is mostly attributable to exon 327 enrichment. In addition, based on the recently demonstrated dominant negative mechanism, the extremely low NMD efficiency seems to contribute to exon 327 enrichment.
KW - dilated cardiomyopathy
KW - exon 327
KW - nonsense-mediated mRNA decay
KW - truncating variant
KW - TTN
UR - https://www.scopus.com/pages/publications/85146849128
U2 - 10.3389/fgene.2022.1087359
DO - 10.3389/fgene.2022.1087359
M3 - Article
AN - SCOPUS:85146849128
SN - 1664-8021
VL - 13
JO - Frontiers in Genetics
JF - Frontiers in Genetics
M1 - 1087359
ER -