TY - GEN
T1 - Electrical properties of charging effect in Au nanoparticle memory device
AU - Jung, Sung Mok
AU - Kim, Hyung Jun
AU - Kim, Bong Jin
AU - Il-Seo,
AU - Yoon, Tae Sik
AU - Kim, Yong Sang
AU - Lee, Hyun Ho
PY - 2010
Y1 - 2010
N2 - Semiconductors or metal nanoparticles (NPs) using their monolayer bindings with self-assembly chemicals are an attractive topic for device researchers. Electrical performance of such structures can be investigated for a particular application, such as memory device. Currently, Au NPs has been reported to show a substantial potential in the memory applications. In this study, Au NP and gluing layer were fabricated through a new method of monolayer formation of a chemical bonding or gluing. In this study, a new NPs memory system was fabricated by using organic semiconductor, i.e., pentacene as the active layer, evaporated Au as electrode, SiO2 as the gate insulator layer on silicon wafer. In addition, Au NPs coated with binding chemicals were used as charge storage elements on an APTES (3-amino-propyltriethoxysilane) as a gluing layer. In order to investigate chemical binding of Au NP to the gate insulator layer, GPTMS (3-glycidoxy-propyltrimethoxysilane) were coated on the Au NPs. As a result of that, a layer of gold nanoparticles has been incorporated into a metal-pentacene-insulator-semiconductor (MPIS) structure. The MPIS device with the Au NP exhibited a hysteresis in its capacitance versus voltage analysis. Charge storage in the layer of nanoparticles is thought to be responsible for this effect.
AB - Semiconductors or metal nanoparticles (NPs) using their monolayer bindings with self-assembly chemicals are an attractive topic for device researchers. Electrical performance of such structures can be investigated for a particular application, such as memory device. Currently, Au NPs has been reported to show a substantial potential in the memory applications. In this study, Au NP and gluing layer were fabricated through a new method of monolayer formation of a chemical bonding or gluing. In this study, a new NPs memory system was fabricated by using organic semiconductor, i.e., pentacene as the active layer, evaporated Au as electrode, SiO2 as the gate insulator layer on silicon wafer. In addition, Au NPs coated with binding chemicals were used as charge storage elements on an APTES (3-amino-propyltriethoxysilane) as a gluing layer. In order to investigate chemical binding of Au NP to the gate insulator layer, GPTMS (3-glycidoxy-propyltrimethoxysilane) were coated on the Au NPs. As a result of that, a layer of gold nanoparticles has been incorporated into a metal-pentacene-insulator-semiconductor (MPIS) structure. The MPIS device with the Au NP exhibited a hysteresis in its capacitance versus voltage analysis. Charge storage in the layer of nanoparticles is thought to be responsible for this effect.
UR - https://www.scopus.com/pages/publications/77957779573
M3 - Conference contribution
AN - SCOPUS:77957779573
SN - 9781617387623
T3 - Materials Research Society Symposium Proceedings
SP - 115
EP - 118
BT - Colloidal Nanoparticles for Electronic Applications - Light Emission, Detection, Photovoltaics, and Transport
T2 - 2009 MRS Fall Meeting
Y2 - 30 November 2009 through 4 December 2009
ER -