TY - JOUR
T1 - Effect of chemical composition variant and oxygen plasma treatments on thewettability of PLGA thin films, synthesized by direct copolycondensation
AU - Ayyoob, Muhammad
AU - Kim, Young Jun
N1 - Publisher Copyright:
© 2018 by the authors.
PY - 2018/10/12
Y1 - 2018/10/12
N2 - The synthesis of high molecular weight poly (lactic-co-glycolic) acid (PLGA) copolymers via direct condensation copolymerization is itself a challenging task. Moreover, some of the characteristic properties of polylactide (PLA)-based biomaterials, such as brittleness, hydrophobicity, and longer degradation time, are not suitable for certain biomedical applications. However, such properties can be altered by the copolymerization of PLA with other biodegradable monomers, such as glycolic acid. A series of high molecular weight PLGAs were synthesized through the direct condensation copolymerization of lactic and glycolic acids, starting from 0 to 50 mol% of glycolic acid, and the wettability of its films was monitored as a function of the feed molar ratio. Copolymerization was performed in the presence of a bi-catalytic system using stannous chloride dihydrate and methanesulfonic acid (MSA). The viscosity average molecular weight of the resulting PLGA was in the range of 80k to 135k g/mol. The PLGA films were prepared using the solvent casting technique, and were treated with oxygen plasma for 2 min. The water contact angle of the PLGA films was determined before and after the oxygen plasma treatments, and it was observed that the wettability increased with an increase in the glycolic acid contents, however, the manifolds increased after 2 min of oxygen plasma treatments.
AB - The synthesis of high molecular weight poly (lactic-co-glycolic) acid (PLGA) copolymers via direct condensation copolymerization is itself a challenging task. Moreover, some of the characteristic properties of polylactide (PLA)-based biomaterials, such as brittleness, hydrophobicity, and longer degradation time, are not suitable for certain biomedical applications. However, such properties can be altered by the copolymerization of PLA with other biodegradable monomers, such as glycolic acid. A series of high molecular weight PLGAs were synthesized through the direct condensation copolymerization of lactic and glycolic acids, starting from 0 to 50 mol% of glycolic acid, and the wettability of its films was monitored as a function of the feed molar ratio. Copolymerization was performed in the presence of a bi-catalytic system using stannous chloride dihydrate and methanesulfonic acid (MSA). The viscosity average molecular weight of the resulting PLGA was in the range of 80k to 135k g/mol. The PLGA films were prepared using the solvent casting technique, and were treated with oxygen plasma for 2 min. The water contact angle of the PLGA films was determined before and after the oxygen plasma treatments, and it was observed that the wettability increased with an increase in the glycolic acid contents, however, the manifolds increased after 2 min of oxygen plasma treatments.
KW - Copolymerization
KW - Direct esterification
KW - High molecular weight
KW - Hydrophobicity
KW - PLGA
KW - Wettability
UR - https://www.scopus.com/pages/publications/85054899959
U2 - 10.3390/polym10101132
DO - 10.3390/polym10101132
M3 - Article
AN - SCOPUS:85054899959
SN - 2073-4360
VL - 10
JO - Polymers
JF - Polymers
IS - 10
M1 - 1132
ER -