TY - JOUR
T1 - Discovery of urinary metabolomic biomarkers for early detection of acute kidney injury
AU - Won, A. Jin
AU - Kim, Siwon
AU - Kim, Yoon Gyoon
AU - Kim, Kyu Bong
AU - Choi, Wahn Soo
AU - Kacew, Sam
AU - Kim, Kyeong Seok
AU - Jung, Jee H.
AU - Lee, Byung Mu
AU - Kim, Suhkmann
AU - Kim, Hyung Sik
N1 - Publisher Copyright:
© 2016 The Royal Society of Chemistry.
PY - 2016
Y1 - 2016
N2 - The discovery of new biomarkers for early detection of drug-induced acute kidney injury (AKI) is clinically important. In this study, sensitive metabolomic biomarkers identified in the urine of rats were used to detect cisplatin-induced AKI. Cisplatin (10 mg kg-1, i.p.) was administered to Sprague-Dawley rats, which were subsequently euthanized after 1, 3 or 5 days. In cisplatin-treated rats, mild histopathological alterations were noted at day 1, and these changes were severe at days 3 and 5. Blood urea nitrogen (BUN) and serum creatinine (SCr) levels were significantly increased at days 3 and 5. The levels of new urinary protein-based biomarkers, including kidney injury molecule-1 (KIM-1), glutathione S-transferase-α (GST-α), tissue inhibitor of metalloproteinase-1 (TIMP-1), vascular endothelial growth factor (VEGF), calbindin, clusterin, neutrophil, neutrophil gelatinase-associated lipocalin (NGAL), and osteopontin, were significantly elevated at days 3 and 5. Among urinary metabolites, trigonelline and 3-indoxylsulfate (3-IS) levels were significantly decreased in urine collected from cisplatin-treated rats prior to histological kidney damage. However, carbon tetrachloride (CCl4), a hepatotoxicant, did not affect these urinary biomarkers. Trigonelline is closely associated with GSH depletion and results in insufficient antioxidant capacity against cisplatin-induced AKI. The predominant cisplatin-induced AKI marker appeared to be reduced in urinary 3-IS levels. Because 3-IS is predominantly excreted via active secretion in proximal tubules, a decrease is indicative of tubular damage. Further, urinary excretion of 3-IS levels was markedly reduced in patients with AKI compared to normal subjects. The area under the curve receiver operating characteristics (AUC-ROC) for 3-IS was higher than for SCr, BUN, lactate dehydrogenase (LDH), total protein, and glucose. Therefore, low urinary or high serum 3-IS levels may be more useful for early detection of AKI than conventional biomarkers.
AB - The discovery of new biomarkers for early detection of drug-induced acute kidney injury (AKI) is clinically important. In this study, sensitive metabolomic biomarkers identified in the urine of rats were used to detect cisplatin-induced AKI. Cisplatin (10 mg kg-1, i.p.) was administered to Sprague-Dawley rats, which were subsequently euthanized after 1, 3 or 5 days. In cisplatin-treated rats, mild histopathological alterations were noted at day 1, and these changes were severe at days 3 and 5. Blood urea nitrogen (BUN) and serum creatinine (SCr) levels were significantly increased at days 3 and 5. The levels of new urinary protein-based biomarkers, including kidney injury molecule-1 (KIM-1), glutathione S-transferase-α (GST-α), tissue inhibitor of metalloproteinase-1 (TIMP-1), vascular endothelial growth factor (VEGF), calbindin, clusterin, neutrophil, neutrophil gelatinase-associated lipocalin (NGAL), and osteopontin, were significantly elevated at days 3 and 5. Among urinary metabolites, trigonelline and 3-indoxylsulfate (3-IS) levels were significantly decreased in urine collected from cisplatin-treated rats prior to histological kidney damage. However, carbon tetrachloride (CCl4), a hepatotoxicant, did not affect these urinary biomarkers. Trigonelline is closely associated with GSH depletion and results in insufficient antioxidant capacity against cisplatin-induced AKI. The predominant cisplatin-induced AKI marker appeared to be reduced in urinary 3-IS levels. Because 3-IS is predominantly excreted via active secretion in proximal tubules, a decrease is indicative of tubular damage. Further, urinary excretion of 3-IS levels was markedly reduced in patients with AKI compared to normal subjects. The area under the curve receiver operating characteristics (AUC-ROC) for 3-IS was higher than for SCr, BUN, lactate dehydrogenase (LDH), total protein, and glucose. Therefore, low urinary or high serum 3-IS levels may be more useful for early detection of AKI than conventional biomarkers.
UR - https://www.scopus.com/pages/publications/84951028982
U2 - 10.1039/c5mb00492f
DO - 10.1039/c5mb00492f
M3 - Article
C2 - 26566257
AN - SCOPUS:84951028982
SN - 1742-206X
VL - 12
SP - 133
EP - 144
JO - Molecular BioSystems
JF - Molecular BioSystems
IS - 1
ER -