Abstract
We demonstrate two-dimensional photonic crystals of silicon carbide (SiC)-a wide bandgap semiconductor and one of the hardest materials-at near-infrared wavelengths. Although the refractive index of SiC is lower than that of a conventional semiconductor such as GaAs or Si, we show theoretically that a wide photonic bandgap, a broadband waveguide, and a high-quality nanocavity comparable to those of previous photonic crystals can be obtained in SiC photonic crystals. We also develop a process for fabricating SiC-based photonic crystals that experimentally show a photonic bandgap of 200 nm, a waveguide with a 40-nm bandwidth, and a nanocavity with a high quality factor of 4,500. This demonstration should stimulate further development of resilient and stable photonics at high power and high temperature analogous to SiC power electronics.
| Original language | English |
|---|---|
| Pages (from-to) | 11084-11089 |
| Number of pages | 6 |
| Journal | Optics Express |
| Volume | 19 |
| Issue number | 12 |
| DOIs | |
| State | Published - 6 Jun 2011 |