TY - GEN
T1 - Creating a robust desktop grid using peer-to-peer services
AU - Kim, Jik Soo
AU - Nam, Beomseok
AU - Marsh, Michael
AU - Keleher, Peter
AU - Bhattacharjee, Bobby
AU - Richardson, Derek
AU - Wellnitz, Dennis
AU - Sussman, Alan
PY - 2007
Y1 - 2007
N2 - The goal of the work described in this paper is to design and build a scalable infrastructure for executing grid applications on a widely distributed set of resources. Such grid infrastructure must be decentralized, robust, highly available, and scalable, while efficiently mapping application instances to available resources in the system. However, current desktop grid computing platforms are typically based on a client-server architecture, which has inherent shortcomings with respect to robustness, reliability and scalability. Fortunately, these problems can be addressed through the capabilities promised by new techniques and approaches in Peer-to-Peer (P2P) systems. By employing P2P services, our system allows users to submit jobs to be run in the system and to run jobs submitted by other users on any resources available in the system, essentially allowing a group of users to form an ad-hoc set of shared resources. The initial target application areas for the desktop grid system are in astronomy and space science simulation and data analysis.
AB - The goal of the work described in this paper is to design and build a scalable infrastructure for executing grid applications on a widely distributed set of resources. Such grid infrastructure must be decentralized, robust, highly available, and scalable, while efficiently mapping application instances to available resources in the system. However, current desktop grid computing platforms are typically based on a client-server architecture, which has inherent shortcomings with respect to robustness, reliability and scalability. Fortunately, these problems can be addressed through the capabilities promised by new techniques and approaches in Peer-to-Peer (P2P) systems. By employing P2P services, our system allows users to submit jobs to be run in the system and to run jobs submitted by other users on any resources available in the system, essentially allowing a group of users to form an ad-hoc set of shared resources. The initial target application areas for the desktop grid system are in astronomy and space science simulation and data analysis.
UR - https://www.scopus.com/pages/publications/34548712828
U2 - 10.1109/IPDPS.2007.370505
DO - 10.1109/IPDPS.2007.370505
M3 - Conference contribution
AN - SCOPUS:34548712828
SN - 1424409101
SN - 9781424409105
T3 - Proceedings - 21st International Parallel and Distributed Processing Symposium, IPDPS 2007; Abstracts and CD-ROM
BT - Proceedings - 21st International Parallel and Distributed Processing Symposium, IPDPS 2007; Abstracts and CD-ROM
T2 - 21st International Parallel and Distributed Processing Symposium, IPDPS 2007
Y2 - 26 March 2007 through 30 March 2007
ER -