Construction of controlled-NOT gate based on microwave-activated phase (MAP) gate in two transmon system

Taewan Noh, Gwanyeol Park, Soon Gul Lee, Woon Song, Yonuk Chong

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

We experimentally constructed an all-microwave scheme for the controlled-NOT (cNOT) gate between two superconducting transmon qubits in a three dimensional cavity. Our cNOT gate is based on the microwave-activated phase (MAP) gate, which requires an additional procedure to compensate the accumulated phases during the operation of the MAP gate. We applied Z-axis phase gates using microwave hyperbolic secant pulse on both qubits with adequate rotation angles systematically calibrated by separate measurements. We evaluated the gate performance of the constructed cNOT gate by performing two-qubit quantum process tomography (QPT). Finally, we present the experimental implementation of the Deutsch-Jozsa algorithm using the cNOT gate.

Original languageEnglish
Article number13598
JournalScientific Reports
Volume8
Issue number1
DOIs
StatePublished - 1 Dec 2018
Externally publishedYes

Fingerprint

Dive into the research topics of 'Construction of controlled-NOT gate based on microwave-activated phase (MAP) gate in two transmon system'. Together they form a unique fingerprint.

Cite this