TY - JOUR
T1 - Comparative Study of Dimeric Fibroblast Activation Protein-Targeting Radioligands Labeled with Fluorine-18, Copper-64, and Gallium-68
AU - Zhang, Xuran
AU - Lee, Kyo Chul
AU - Choi, Joon Young
AU - Lee, Kyung Han
AU - Choe, Yearn Seong
N1 - Publisher Copyright:
© 2024 American Chemical Society.
PY - 2025/2/3
Y1 - 2025/2/3
N2 - Fibroblast activation protein inhibitors (FAPIs) labeled with gallium-68 and lutetium-177 show potential for use in the diagnosis and treatment of various cancers expressing FAP. However, 177Lu-labeled FAPIs often exhibit short tumor retention time, limiting their therapeutic applications. To improve tumor retention, we synthesized three radiolabeled dimeric FAPIs, [18F]1, [64Cu]2, and [68Ga]3. These were prepared by chelating Al[18F]F to 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA)-l-glutamic acid (E)-(FAPI)2 and copper-64 or gallium-68 to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-E-(FAPI)2. NOTA-E-(FAPI)2 and DOTA-E-(FAPI)2 showed higher binding affinities for FAP compared with that of FAPI-04 (IC50 = 0.47 and 0.16 nM vs 0.89 nM, respectively). All radioligands were synthesized in high decay-corrected radiochemical yields (59-96%) and were stable in fetal bovine serum and phosphate-buffered saline. The more hydrophilic radioligand, [68Ga]3, was selected for cellular uptake studies, which confirmed FAP-specific uptake. Positron emission tomography imaging and ex vivo biodistribution studies in U87MG tumor-bearing mice revealed high tumor uptake of all three radioligands, with significant blocking observed after preinjection of FAPI-04. [64Cu]2 and [68Ga]3 exhibited favorable in vivo pharmacokinetics compared to those of [18F]1. Notably, [68Ga]3 showed lower normal organ uptake than did the other two radioligands, and moreover, it exhibited higher, more prolonged tumor uptake than its monomeric counterpart [68Ga]Ga-FAPI-04 over a 3 h period, suggesting its potential as a promising FAP-specific theranostic radioligand.
AB - Fibroblast activation protein inhibitors (FAPIs) labeled with gallium-68 and lutetium-177 show potential for use in the diagnosis and treatment of various cancers expressing FAP. However, 177Lu-labeled FAPIs often exhibit short tumor retention time, limiting their therapeutic applications. To improve tumor retention, we synthesized three radiolabeled dimeric FAPIs, [18F]1, [64Cu]2, and [68Ga]3. These were prepared by chelating Al[18F]F to 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA)-l-glutamic acid (E)-(FAPI)2 and copper-64 or gallium-68 to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-E-(FAPI)2. NOTA-E-(FAPI)2 and DOTA-E-(FAPI)2 showed higher binding affinities for FAP compared with that of FAPI-04 (IC50 = 0.47 and 0.16 nM vs 0.89 nM, respectively). All radioligands were synthesized in high decay-corrected radiochemical yields (59-96%) and were stable in fetal bovine serum and phosphate-buffered saline. The more hydrophilic radioligand, [68Ga]3, was selected for cellular uptake studies, which confirmed FAP-specific uptake. Positron emission tomography imaging and ex vivo biodistribution studies in U87MG tumor-bearing mice revealed high tumor uptake of all three radioligands, with significant blocking observed after preinjection of FAPI-04. [64Cu]2 and [68Ga]3 exhibited favorable in vivo pharmacokinetics compared to those of [18F]1. Notably, [68Ga]3 showed lower normal organ uptake than did the other two radioligands, and moreover, it exhibited higher, more prolonged tumor uptake than its monomeric counterpart [68Ga]Ga-FAPI-04 over a 3 h period, suggesting its potential as a promising FAP-specific theranostic radioligand.
KW - copper-64
KW - dimer
KW - fibroblast activation protein (FAP)
KW - fluorine-18
KW - gallium-68
KW - PET
UR - https://www.scopus.com/pages/publications/85216940450
U2 - 10.1021/acs.molpharmaceut.4c01080
DO - 10.1021/acs.molpharmaceut.4c01080
M3 - Article
C2 - 39736080
AN - SCOPUS:85216940450
SN - 1543-8384
VL - 22
SP - 906
EP - 917
JO - Molecular Pharmaceutics
JF - Molecular Pharmaceutics
IS - 2
ER -