Abstract
We have comparatively investigated the photophysics of a series of bis-metal doubly N-confused hexaphyrins(1.1.1.1.1.1) using time-resolved fluorescence, femtosecond transient absorption, two-photon absorption measurements, and geometry-optimized ab initio calculations. Bis-Zn(II) and free-base doubly N-confused hexaphyrins exhibit well-resolved and red-shifted B- and Q-like absorption bands compared with porphyrins. Their allowed transitions are (π,π*) transitions of the hexaphyrin ring, as confirmed by the HOMO and LUMO frontier orbitals based on ab initio calculations at the B3LYP/6-31G level. On the other hand, the absorption spectra of bis-Cu(II) and bis-Co(II) doubly N-confused hexaphyrins are relatively broad, presumably due to large couplings between the metal d-orbitals and π-electrons of the hexaphyrin ring. Owing to these couplings, bis-Cu(II) and bis-Co(II) doubly N-confused hexaphyrins have much shorter excited-state lifetimes of 9.4 ± 0.3 ps and 670 fs, respectively, than those (267 ± 16 and 62.4 ± 1.2 ps, respectively) of bis-Zn(II) and free-base doubly N-confused hexaphyrins. The two-photon absorption cross section (σ(2)) values, which are believed to depend strongly on the ring planarity (π-conjugation), are in line with the excited-state lifetime trends.
| Original language | English |
|---|---|
| Pages (from-to) | 11683-11690 |
| Number of pages | 8 |
| Journal | Journal of Physical Chemistry B |
| Volume | 110 |
| Issue number | 24 |
| DOIs | |
| State | Published - 22 Jun 2006 |
| Externally published | Yes |