Abstract
We investigate for the first time the possibility of integrating chemical vapor deposition (CVD) HfO2 into the multiple gate dielectric system-on-a-chlp (SoC) process in the range of 6-7 nm, which supports higher voltage (2.5-5-V operation/tolerance). Results show that CVD HfO2-SiO2 stacked gate dielectric (EOT = 6.2 nm) exhibits lower leakage current than that of SiO2 (EOT = 5.7 nm) by a factor of ∼102, with comparable interface quality (Dit ∼ 1 × 1010 cm-2 eV-1). The presence of negative fixed charge is observed in HfO2-SiO2 gate stack. In addition, the addition of HfO2 on SiO2 does not alter the dominant conduction mechanism of Fowler-Nordheim tunneling in HfO2-SiO2 gate stack. Furthermore, the HfO2-SiO2 gate stack shows longer time to breakdown TBD than SiO2 under constant voltage stress. These results suggest that it may be feasible to use such a gate stack for higher voltage operation in SoC, provided other key requirements such as Vt stability (charge trapping under stress) can be met and the negative fixed charge eliminated.
| Original language | English |
|---|---|
| Pages (from-to) | 105-107 |
| Number of pages | 3 |
| Journal | IEEE Electron Device Letters |
| Volume | 24 |
| Issue number | 2 |
| DOIs | |
| State | Published - Feb 2003 |
| Externally published | Yes |
Keywords
- Chemical vapor deposition (CVD)
- Hafnium oxide (HfO)
- High-k gate dielectric