TY - JOUR
T1 - Bioaugmentation of anaerobic sludge digestion with iron-reducing bacteria
T2 - process and microbial responses to variations in hydraulic retention time
AU - Baek, Gahyun
AU - Kim, Jaai
AU - Shin, Seung Gu
AU - Lee, Changsoo
N1 - Publisher Copyright:
© 2015, Springer-Verlag Berlin Heidelberg.
PY - 2016/1/1
Y1 - 2016/1/1
N2 - Although anaerobic digestion (AD) is a widely used option to manage waste activated sludge (WAS), there are some drawbacks related to its slow reaction rate and low energy productivity. This study examined an anaerobic WAS digester, augmented with an iron-reducing microbial consortium, relative to changes in microbial community structure and process performance at decreasing hydraulic retention times (HRTs) of 20 to 10 days. The enhanced methanation performance (approximately 40 % increase in methane yield) by the bioaugmentation was sustained until the HRT was decreased to 12.5 days, under Fe3+-rich conditions (ferric oxyhydroxide, 20 mM Fe). Enhanced iron-reducing activity was evidenced by the increased Fe2+ to total Fe ratio maintained above 50 % during the stable operational phases. A further decrease in HRT to 10 days resulted in a significant performance deterioration, along with a drop in the Fe2+ to total Fe ratio to <35 %, after four turnovers of operation. Prevailing existence of putative iron-reducing bacteria (IRBs) was identified by denaturing gradient gel electrophoresis (DGGE), with Spirochaetaceae- and Thauera-related organisms being dominant members, and clear dominance shifts among them with respect to decrease in HRT were observed. Lowering HRT led to evident shifts in bacterial community structure likely associated with washout of IRBs, leading to decreases in iron respiration activity and AD performance at a lower HRT. The bacterial community structure shifted dynamically over phases, and the community transitions correlated well with the changes in process performance. Overall, the combined biostimulation and bioaugmentation investigated in this study proved effective for enhanced methane recovery from anaerobic WAS digestion, which suggests an interesting potential for high-rate AD.
AB - Although anaerobic digestion (AD) is a widely used option to manage waste activated sludge (WAS), there are some drawbacks related to its slow reaction rate and low energy productivity. This study examined an anaerobic WAS digester, augmented with an iron-reducing microbial consortium, relative to changes in microbial community structure and process performance at decreasing hydraulic retention times (HRTs) of 20 to 10 days. The enhanced methanation performance (approximately 40 % increase in methane yield) by the bioaugmentation was sustained until the HRT was decreased to 12.5 days, under Fe3+-rich conditions (ferric oxyhydroxide, 20 mM Fe). Enhanced iron-reducing activity was evidenced by the increased Fe2+ to total Fe ratio maintained above 50 % during the stable operational phases. A further decrease in HRT to 10 days resulted in a significant performance deterioration, along with a drop in the Fe2+ to total Fe ratio to <35 %, after four turnovers of operation. Prevailing existence of putative iron-reducing bacteria (IRBs) was identified by denaturing gradient gel electrophoresis (DGGE), with Spirochaetaceae- and Thauera-related organisms being dominant members, and clear dominance shifts among them with respect to decrease in HRT were observed. Lowering HRT led to evident shifts in bacterial community structure likely associated with washout of IRBs, leading to decreases in iron respiration activity and AD performance at a lower HRT. The bacterial community structure shifted dynamically over phases, and the community transitions correlated well with the changes in process performance. Overall, the combined biostimulation and bioaugmentation investigated in this study proved effective for enhanced methane recovery from anaerobic WAS digestion, which suggests an interesting potential for high-rate AD.
KW - Anaerobic digestion
KW - Bioaugmentation
KW - Ferric oxyhydroxide
KW - Iron-reducing bacteria
KW - Microbial community structure
UR - https://www.scopus.com/pages/publications/84953639060
U2 - 10.1007/s00253-015-7018-y
DO - 10.1007/s00253-015-7018-y
M3 - Article
C2 - 26428233
AN - SCOPUS:84953639060
SN - 0175-7598
VL - 100
SP - 927
EP - 937
JO - Applied Microbiology and Biotechnology
JF - Applied Microbiology and Biotechnology
IS - 2
ER -