TY - JOUR
T1 - Association between forearm cortical bone properties and handgrip strength in women with distal radius fractures
T2 - A cross-sectional study
AU - Hong, Seok Woo
AU - Kang, Jeong Hyun
AU - Kim, Jong Seop
AU - Gong, Hyun Sik
N1 - Publisher Copyright:
© 2020 Hong et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2020/12
Y1 - 2020/12
N2 - Objectives Mechanical and biochemical bone properties are influenced by muscles. However, the muscle-bone interaction has not been fully elucidated regarding the upper extremities. The objective of the present study was to evaluate the mechanical muscle-bone interaction at the forearm by evaluating the relationship between the properties of three-dimensional (3D) forearm cortical bone models derived from conventional computed tomography (CT) images and handgrip strength (HGS). Methods A total of 108 women (mean age, 75.2 ± 9.4 years; range, 62–101 years) with a distal radius fracture who took conventional CT scans for the assessment of the fracture were included in this study. Distal radius 3D models were reconstructed and the average cortical bone density (Cd) and thickness (Ct) of the region of interest (ROI), which might be affected by the forearm flexor muscles, were calculated using a 3D modeling software. Clinical parameters including HGS, lumbar and hip bone mineral densities (BMDs), and other demographic factors were also obtained. A multivariate linear regression analysis was performed to identify relevant factors associated with HGS. Results HGS was found to be independently associated with height and Cd, but no significant difference was found between HGS and Ct, age, weight, as well as lumber and hip BMDs. Conclusions Cortical bone density might be associated with HGS, which is generated by the forearm flexor muscles. Hence, the mechanical muscle-bone interaction in the upper extremities could be supported by the present study.
AB - Objectives Mechanical and biochemical bone properties are influenced by muscles. However, the muscle-bone interaction has not been fully elucidated regarding the upper extremities. The objective of the present study was to evaluate the mechanical muscle-bone interaction at the forearm by evaluating the relationship between the properties of three-dimensional (3D) forearm cortical bone models derived from conventional computed tomography (CT) images and handgrip strength (HGS). Methods A total of 108 women (mean age, 75.2 ± 9.4 years; range, 62–101 years) with a distal radius fracture who took conventional CT scans for the assessment of the fracture were included in this study. Distal radius 3D models were reconstructed and the average cortical bone density (Cd) and thickness (Ct) of the region of interest (ROI), which might be affected by the forearm flexor muscles, were calculated using a 3D modeling software. Clinical parameters including HGS, lumbar and hip bone mineral densities (BMDs), and other demographic factors were also obtained. A multivariate linear regression analysis was performed to identify relevant factors associated with HGS. Results HGS was found to be independently associated with height and Cd, but no significant difference was found between HGS and Ct, age, weight, as well as lumber and hip BMDs. Conclusions Cortical bone density might be associated with HGS, which is generated by the forearm flexor muscles. Hence, the mechanical muscle-bone interaction in the upper extremities could be supported by the present study.
UR - https://www.scopus.com/pages/publications/85097122873
U2 - 10.1371/journal.pone.0243294
DO - 10.1371/journal.pone.0243294
M3 - Article
C2 - 33270744
AN - SCOPUS:85097122873
SN - 1932-6203
VL - 15
JO - PLoS ONE
JF - PLoS ONE
IS - 12 December
M1 - e0243294
ER -