TY - GEN
T1 - AdFlush
T2 - 33rd ACM Web Conference, WWW 2024
AU - Lee, Kiho
AU - Lim, Chaejin
AU - Jin, Beomjin
AU - Kim, Taeyoung
AU - Kim, Hyoungshick
N1 - Publisher Copyright:
© 2024 ACM.
PY - 2024/5/13
Y1 - 2024/5/13
N2 - Conventional ad blocking and tracking prevention tools often fall short in addressing web content manipulation. Machine learning approaches have been proposed to enhance detection accuracy, yet aspects of practical deployment have frequently been overlooked. This paper introduces AdFlush, a novel machine learning model for real-world browsers. To develop AdFlush, we evaluated the effectiveness of 883 features, ultimately selecting 27 key features for optimal performance. We tested AdFlush on a dataset of 10,000 real-world websites, achieving an F1 score of 0.98, thereby outperforming AdGraph (F1 score: 0.93), WebGraph (F1 score: 0.90), and WTAgraph (F1 score: 0.84). Additionally, AdFlush significantly reduces computational overhead, requiring 56% less CPU and 80% less memory than AdGraph. We also assessed AdFlush's robustness against adversarial manipulations, demonstrating superior resilience with F1 scores ranging from 0.89 to 0.98, surpassing the performance of AdGraph and WebGraph, which recorded F1 scores between 0.81 and 0.87. A six-month longitudinal study confirmed that AdFlush maintains a high F1 score above 0.97 without the need for retraining, underscoring its effectiveness.
AB - Conventional ad blocking and tracking prevention tools often fall short in addressing web content manipulation. Machine learning approaches have been proposed to enhance detection accuracy, yet aspects of practical deployment have frequently been overlooked. This paper introduces AdFlush, a novel machine learning model for real-world browsers. To develop AdFlush, we evaluated the effectiveness of 883 features, ultimately selecting 27 key features for optimal performance. We tested AdFlush on a dataset of 10,000 real-world websites, achieving an F1 score of 0.98, thereby outperforming AdGraph (F1 score: 0.93), WebGraph (F1 score: 0.90), and WTAgraph (F1 score: 0.84). Additionally, AdFlush significantly reduces computational overhead, requiring 56% less CPU and 80% less memory than AdGraph. We also assessed AdFlush's robustness against adversarial manipulations, demonstrating superior resilience with F1 scores ranging from 0.89 to 0.98, surpassing the performance of AdGraph and WebGraph, which recorded F1 scores between 0.81 and 0.87. A six-month longitudinal study confirmed that AdFlush maintains a high F1 score above 0.97 without the need for retraining, underscoring its effectiveness.
KW - ad blocking
KW - machine learning
KW - web security
KW - web tracking
UR - https://www.scopus.com/pages/publications/85194080417
U2 - 10.1145/3589334.3645698
DO - 10.1145/3589334.3645698
M3 - Conference contribution
AN - SCOPUS:85194080417
T3 - WWW 2024 - Proceedings of the ACM Web Conference
SP - 1902
EP - 1913
BT - WWW 2024 - Proceedings of the ACM Web Conference
PB - Association for Computing Machinery, Inc
Y2 - 13 May 2024 through 17 May 2024
ER -