A variational observation model of 3D object for probabilistic semantic slam

H. W. Yu, J. Y. Moon, B. H. Lee

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

17 Scopus citations

Abstract

We present a Bayesian object observation model for complete probabilistic semantic SLAM. Recent studies on object detection and feature extraction have become important for scene understanding and 3D mapping. However, 3D shape of the object is too complex to formulate the probabilistic observation model; therefore, performing the Bayesian inference of the object-oriented features as well as their pose is less considered. Besides, when the robot equipped with an RGB mono camera only observes the projected single view of an object, a significant amount of the 3D shape information is abandoned. Due to these limitations, semantic SLAM and viewpoint-independent loop closure using volumetric 3D object shape is challenging. In order to enable the complete formulation of probabilistic semantic SLAM, we approximate the observation model of a 3D object with a tractable distribution. We also estimate the variational likelihood from the 2D image of the object to exploit its observed single view. In order to evaluate the proposed method, we perform pose and feature estimation, and demonstrate that the automatic loop closure works seamlessly without additional loop detector in various environments.

Original languageEnglish
Title of host publication2019 International Conference on Robotics and Automation, ICRA 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages5866-5872
Number of pages7
ISBN (Electronic)9781538660263
DOIs
StatePublished - May 2019
Externally publishedYes
Event2019 International Conference on Robotics and Automation, ICRA 2019 - Montreal, Canada
Duration: 20 May 201924 May 2019

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Conference

Conference2019 International Conference on Robotics and Automation, ICRA 2019
Country/TerritoryCanada
CityMontreal
Period20/05/1924/05/19

Fingerprint

Dive into the research topics of 'A variational observation model of 3D object for probabilistic semantic slam'. Together they form a unique fingerprint.

Cite this