TY - JOUR
T1 - A data-driven artificial intelligence model for remote triage in the prehospital environment
AU - Kim, Dohyun
AU - You, Sungmin
AU - So, Soonwon
AU - Lee, Jongshill
AU - Yook, Sunhyun
AU - Jang, Dong Pyo
AU - Kim, In Young
AU - Park, Eunkyoung
AU - Cho, Kyeongwon
AU - Cha, Won Chul
AU - Shin, Dong Wook
AU - Cho, Baek Hwan
AU - Park, Hoon Ki
N1 - Publisher Copyright:
© 2018 Kim et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2018/10
Y1 - 2018/10
N2 - In a mass casualty incident, the factors that determine the survival rate of injured patients are diverse, but one of the key factors is the time for triage. Additionally, the main factor that determines the time of triage is the number of medical personnel. However, when relying on a small number of medical personnel, the ability to increase survivability is limited. Therefore, developing a classification model for survival prediction that can quickly and precisely triage via wearable devices without medical personnel is important. In this study, we designed a consciousness index to substitute the factor by manpower and improved the classification accuracy by applying a machine learning algorithm. First, logistic regression analysis using vital signs and a consciousness index capable of remote monitoring through wearable devices confirmed the high efficiency of the consciousness index. We then developed a classification model with high accuracy which corresponds to existing injury severity scoring systems through the machine learning algorithms. We extracted 460,865 cases which met our criteria for developing the survival prediction from the national sample project in the national trauma databank which contains 408,316 cases of blunt injury and 52,549 cases of penetrating injury. Among the dataset, 17,918 (3.9%) cases died while the other survived. The AUCs with 95% confidence intervals (CIs) for the different models with the proposed simplified consciousness score as follows: RTS (as baseline), 0.78 (95% CI = 0.775 to 0.785); logistic regression, 0.87 (95% CI = 0.862 to 0.870); random forest, 0.87 (95% CI = 0.862 to 0.872); deep neural network, 0.89 (95% CI = 0.882 to 0.890). As a result, we confirmed the possibility of remote triage using a wearable device. It is expected that the time required for triage can be effectively reduced by using the developed classification model of survival prediction.
AB - In a mass casualty incident, the factors that determine the survival rate of injured patients are diverse, but one of the key factors is the time for triage. Additionally, the main factor that determines the time of triage is the number of medical personnel. However, when relying on a small number of medical personnel, the ability to increase survivability is limited. Therefore, developing a classification model for survival prediction that can quickly and precisely triage via wearable devices without medical personnel is important. In this study, we designed a consciousness index to substitute the factor by manpower and improved the classification accuracy by applying a machine learning algorithm. First, logistic regression analysis using vital signs and a consciousness index capable of remote monitoring through wearable devices confirmed the high efficiency of the consciousness index. We then developed a classification model with high accuracy which corresponds to existing injury severity scoring systems through the machine learning algorithms. We extracted 460,865 cases which met our criteria for developing the survival prediction from the national sample project in the national trauma databank which contains 408,316 cases of blunt injury and 52,549 cases of penetrating injury. Among the dataset, 17,918 (3.9%) cases died while the other survived. The AUCs with 95% confidence intervals (CIs) for the different models with the proposed simplified consciousness score as follows: RTS (as baseline), 0.78 (95% CI = 0.775 to 0.785); logistic regression, 0.87 (95% CI = 0.862 to 0.870); random forest, 0.87 (95% CI = 0.862 to 0.872); deep neural network, 0.89 (95% CI = 0.882 to 0.890). As a result, we confirmed the possibility of remote triage using a wearable device. It is expected that the time required for triage can be effectively reduced by using the developed classification model of survival prediction.
UR - https://www.scopus.com/pages/publications/85055604568
U2 - 10.1371/journal.pone.0206006
DO - 10.1371/journal.pone.0206006
M3 - Article
C2 - 30352077
AN - SCOPUS:85055604568
SN - 1932-6203
VL - 13
JO - PLoS ONE
JF - PLoS ONE
IS - 10
M1 - e0206006
ER -